1,654 research outputs found

    Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal

    Get PDF
    The band structure of a two-dimensional granular crystal composed of silicone rubber and polytetrafluoroethylene (PTFE) cylinders is investigated numerically. This system was previously shown to undergo a pattern transformation with uniaxial compression by Göncü et al. [Soft Matter 7, 2321 (2011)]. The dispersion relations of the crystal are computed at different levels of deformation to demonstrate the tunability of the band structure, which is strongly affected by the pattern transformation that induces new band gaps. Replacement of PTFE particles with rubber ones reveals that the change of the band structure is essentially governed by pattern transformation rather than particles¿ mechanical properties

    Deep Energy Retrofits Using the Integrative Design Process: Are they Worth the Cost

    Get PDF
    The McKinsey Global Initiative identified existing building retrofits as an integral component to achieve a 75% reduction in greenhouse gas emissions in the United Sates by 2050 (Fluhrer, Maurer, & Deshmukh 2010). However, this will require energy efficiency retrofits for existing buildings to be deployed more frequently and achieve higher energy savings on average. Deep Energy Retrofits using the Integrative Design Process can result in 30-60%+ energy savings in office buildings. Because Deep Energy Retrofits require higher upfront capital costs, in an economy still recovering from the economic downturn, financial decision makers may not be inclined to invest more capital solely on the basis of higher energy savings. In this paper, Deep Energy Retrofit case studies, research papers, and retrofit guides were examined to answer the question: are deep energy retrofits financially viable, and if so, under what conditions. Utility cost savings, avoided capital costs, as well as additional benefits, like increased reputation, environmental health and enhanced comfort of the building are ways in which Deep Energy Retrofits can be cost-effective; and in some cases profitable for the financial decision maker or building owner. Deep Energy Retrofits using the integrative Design Process present a low-cost and effective strategy to reduce GHG emissions and help aid the US in climate stabilization efforts

    Feedback control of trapped coherent atomic ensembles

    Full text link
    We demonstrate how to use feedback to control the internal states of trapped coherent ensembles of two-level atoms, and to protect a superposition state against the decoherence induced by a collective noise. Our feedback scheme is based on weak optical measurements with negligible back-action and coherent microwave manipulations. The efficiency of the feedback system is studied for a simple binary noise model and characterized in terms of the trade-off between information retrieval and destructivity from the optical probe. We also demonstrate the correction of more general types of collective noise. This technique can be used for the operation of atomic interferometers beyond the standard Ramsey scheme, opening the way towards improved atomic sensors.Comment: 9 pages, 6 figure

    Near-Infrared Photometry of the High-Redshift Quasar RDJ030117+002025: Evidence for a Massive Starburst at z=5.5

    Full text link
    With a redshift of z=5.5 and an optical blue magnitude M_B ~ -24.2 mag (~4.5 10^12 L_sun), RDJ030117+002025 is the most distant optically faint (M_B > -26 mag) quasar known. MAMBO continuum observations at lambda=1.2 mm (185 micrometer rest-frame) showed that this quasar has a far-IR luminosity comparable to its optical luminosity. We present near-infrared J- and K-band photometry obtained with NIRC on the Keck I telescope, tracing the slope of the rest frame UV spectrum of this quasar. The observed spectral index is close to the value of alpha_nu ~ -0.44 measured in composite spectra of optically-bright SDSS quasars. It thus appears that the quasar does not suffer from strong dust extinction, which further implies that its low rest-frame UV luminosity is due to an intrinsically-faint AGN. The FIR to optical luminosity ratio is then much larger than that observed for the more luminous quasars, supporting the suggestion that the FIR emission is not powered by the AGN but by a massive starburst.Comment: 6 pages, APJ in pres

    Spin-squeezing and Dicke state preparation by heterodyne measurement

    Full text link
    We investigate the quantum non-demolition (QND) measurement of an atomic population based on a heterodyne detection and show that the induced back-action allows to prepare both spin-squeezed and Dicke states. We use a wavevector formalism to describe the stochastic process of the measurement and the associated atomic evolution. Analytical formulas of the atomic distribution momenta are derived in the weak coupling regime both for short and long time behavior, and they are in good agreement with those obtained by a Monte-Carlo simulation. The experimental implementation of the proposed heterodyne detection scheme is discussed. The role played in the squeezing process by the spontaneous emission is considered

    Thermodynamics of Dyonic Lifshitz Black Holes

    Full text link
    Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.Comment: 26 pages, 4 figure

    Large N gauge theories and topological cigars

    Get PDF
    We analyze the conjectured duality between a class of double-scaling limits of a one-matrix model and the topological twist of non-critical superstring backgrounds that contain the N=2 Kazama-Suzuki SL(2)/U(1) supercoset model. The untwisted backgrounds are holographically dual to double-scaled Little String Theories in four dimensions and to the large N double-scaling limit of certain supersymmetric gauge theories. The matrix model in question is the auxiliary Dijkgraaf-Vafa matrix model that encodes the F-terms of the above supersymmetric gauge theories. We evaluate matrix model loop correlators with the goal of extracting information on the spectrum of operators in the dual non-critical bosonic string. The twisted coset at level one, the topological cigar, is known to be equivalent to the c=1 non-critical string at self-dual radius and to the topological theory on a deformed conifold. The spectrum and wavefunctions of the operators that can be deduced from the matrix model double-scaling limit are consistent with these expectations.Comment: 34 page
    corecore