2,963 research outputs found

    MHD free convection-radiation interaction in a porous medium - part I : numerical investigation

    Get PDF
    A numerical investigation of two dimensional steady magnetohydrodynamics heat and mass transfer by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium is presented by taking into account the Soret/Dufour effects. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller–Box finite-difference scheme. We use simple central difference derivatives and averages at the mid points of net rectangles to get finite difference equations with a second order truncation error. We have conducted a grid sensitivity and time calculation of the solution execution. Numerical results are obtained for the velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several values of the parameters. The dependency of the thermophysical properties has been discussed on the parameters and shown graphically. The Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. A comparative study between the previously published and present results in a limiting sense is found in an excellent agreement

    Exact analysis of heat convection in viscoelastic FENE-P fluids through isothermal slits and tubes

    Get PDF
    In this article, two exact analytical solutions for heat convection in viscoelastic fluid flow through isothermal tubes and slits are presented for the first time. Herein, a Peterlin type of finitely extensible nonlinear elastic (FENE-P) model is used as the nonlinear constitutive equation for the viscoelastic fluid. Due to the eigenvalue form of the heat transfer equation, the modal analysis technique has been used to determine the physical temperature distributions. The closed form solution for the temperature profile is obtained in terms of a Heun Tri-confluent function for slit flow and then the Frobenius method is used to evaluate the temperature distribution for the tube flow. Based on these solutions, the effects of extensibility parameter and Deborah number on thermal convection in FENE-P fluid flow have been studied in detail. The fractional correlations for reduced Nusselt number in terms of material modulus are also derived. Here, it is shown that by increasing the Deborah number from 0 to 100, the Nusselt number is enhanced by 8.5% and 13.5% for slit and tube flow, respectively

    Peristaltic Transport of a Couple Stress Fluid: Some Applications to Hemodynamics

    Full text link
    The present paper deals with a theoretical investigation of the peristaltic transport of a couple stress fluid in a porous channel. The study is motivated towards the physiological flow of blood in the micro-circulatory system, by taking account of the particle size effect. The velocity, pressure gradient, stream function and frictional force of blood are investigated, when the Reynolds number is small and the wavelength is large, by using appropriate analytical and numerical methods. Effects of different physical parameters reflecting porosity, Darcy number, couple stress parameter as well as amplitude ratio on velocity profiles, pumping action and frictional force, streamlines pattern and trapping of blood are studied with particular emphasis. The computational results are presented in graphical form. The results are found to be in good agreement with those of Shapiro et. al \cite{r25} that was carried out for a non-porous channel in the absence of couple stress effect. The present study puts forward an important observation that for peristaltic transport of a couple stress fluid during free pumping when the couple stress effect of the fluid/Darcy permeability of the medium, flow reversal can be controlled to a considerable extent. Also by reducing the permeability it is possible to avoid the occurrence of trapping phenomenon

    Fast Predictive Image Registration

    Full text link
    We present a method to predict image deformations based on patch-wise image appearance. Specifically, we design a patch-based deep encoder-decoder network which learns the pixel/voxel-wise mapping between image appearance and registration parameters. Our approach can predict general deformation parameterizations, however, we focus on the large deformation diffeomorphic metric mapping (LDDMM) registration model. By predicting the LDDMM momentum-parameterization we retain the desirable theoretical properties of LDDMM, while reducing computation time by orders of magnitude: combined with patch pruning, we achieve a 1500x/66x speed up compared to GPU-based optimization for 2D/3D image registration. Our approach has better prediction accuracy than predicting deformation or velocity fields and results in diffeomorphic transformations. Additionally, we create a Bayesian probabilistic version of our network, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D

    Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media

    Get PDF
    The thermo-viscous fingering instability associated with miscible displacement through a porous medium is studied numerically, motivated by applications in upstream oil industries especially enhanced oil recovery (EOR) via wells using hot water flooding and steam flooding. The main innovative aspect of this study is the inclusion of the effects of viscous dissipation on thermal viscous fingering instability. An Arrhenius equation of state is employed for describing the dependency of viscosity on temperature. The normalized conservation equations are solved with the finite element computational fluid dynamics code, COMSOL (Version 5) in which glycerol is considered as the solute and water as the solvent and the two-phase Darcy model employed (which couples the study Darcy flow equation with the time-dependent convection-diffusion equation for the concentration). The progress of finger patterns is studied using concentration and temperature contours, transversely averaged profiles, mixing length and sweep efficiency. The sweep efficiency is a property widely used in industry to characterize how effective is displacement and it can be defined as the ratio of the volume of displaced fluid to the total volume of available fluid in a porous medium in the displacement process. The effects of Lewis number, Brinkman number and thermal lag coefficient on this instability are examined in detail. The results indicate that increasing viscous dissipation generates significant enhancement in the temperature and a marked reduction in viscosity especially in the displaced fluid (high viscous phase). Therefore, the mobility ratio is reduced, and the flow becomes more stable in the presence of viscous dissipation

    Digitally Programmable Fully Differential Filter

    Get PDF
    In this paper a new digitally programmable voltage mode fully differential Kerwin-Huelsman-Newcomb(KHN) filter is realized using digitally controlled CMOS fully balanced output transconductor (DCBOTA). The realized filter uses five DCBOTAs, a single resistor and two capacitors. The filter provides low-pass, high-pass and band-pass responses simultaneously. The pole-frequency of all the responses is controlled by externally applying an 8- bit digital control word. All the responses exhibit independent digital control for pole-ω0 and pole-Q. The proposed filter also offers low passive sensitivities. Non-ideal gain and parasitic associated with the actual DCBOTA is also discussed. The CMMR results for low-pass response are also included which highlight the advantage of a fully-differential operation. Exhaustive PSPICE simulation is carried out using 0.5µ technology which may be further scaled to explore state-of-the-art applications of the proposed circuit

    Thermal slip in oblique radiative nano-polymer gel transport with temperature-dependent viscosity : solar collector nanomaterial coating manufacturing simulation

    Get PDF
    Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The conservation equations for mass, normal and tangential momentum and energy are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (ALPHA), viscosity parameter (m), nanoparticles volume fraction (PHI) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures
    corecore