577 research outputs found

    Unity of pomerons from gauge/string duality

    Full text link
    We develop a formalism where the hard and soft pomeron contributions to high energy scattering arise as leading Regge poles of a single kernel in holographic QCD. The kernel is obtained using effective field theory inspired by Regge theory of a 5-d string theory. It describes the exchange of higher spin fields in the graviton Regge trajectory that are dual to glueball states of twist two. For a specific holographic QCD model we describe Deep Inelastic Scattering in the Regge limit of low Bjorken x, finding good agreement with experimental data from HERA. The observed rise of the effective pomeron intercept, as the size of the probe decreases, is reproduced by considering the first four pomeron trajectories. In the case of soft probes, relevant to total cross sections, the leading hard pomeron trajectory is suppressed, such that in this kinematical region we reproduce an intercept of 1.09 compatible with the QCD soft pomeron data. In the spectral region of positive Maldelstam variable t the first two pomeron trajectories are consistent with current expectations for the glueball spectrum from lattice simulations

    Soft Pomeron in Holographic QCD

    Full text link
    We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV2^{-2} for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.Comment: 7 pages, 5 figures. V2 : The paper has been expanded to provide more details of the model and results. Added two new figures and two new references; corrected typo

    Improvements in the methylmercury extraction from human hair by headspace solid-phase microextraction followed by gas-chromatography cold-vapour atomic fluorescence spectrometry

    Get PDF
    Improvements in the methylmercury extraction from human hair by solid-phase microextraction followed by gas chromatography coupled to cold-vapour atomic fluorescence spectrometry (GC-CVAFS) have been carried out. They consisted in the optimisation of the digestion step prior to the aqueous-phase ethylation and in the GC-CVAFS interface set-up. The main digestion parameters such as acid type, concentration, temperature and time have been optimised for hair sample analysis, thereby avoiding methylmercury degradation. Moreover, the stability of the digested samples was evaluated to improve the sample throughput

    Deep Inelastic Scattering in Conformal QCD

    Get PDF
    We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation. We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor and its decomposition in transverse spin 0 and spin 2 components. Our formalism reproduces exactly the general results predict by the Regge theory, both for a scalar target and for gamma*-gamma* scattering. We compute current impact factors for the specific examples of N=4 SYM and QCD, obtaining very simple results. In the case of the R-current of N=4 SYM, we show that the transverse spin 2 component vanishes. We conjecture that the impact factors of all chiral primary operators of N=4 SYM only have components with 0 transverse spin.Comment: 44+16 pages, 7 figures. Some correction
    corecore