27 research outputs found

    The Differential Contribution of Striatonigral and Striatopallidal Neurons in Mediating Responses to Therapeutic Agents and Drugs of Abuse: A Dual Role for DARPP-32

    Get PDF
    The basal ganglia are a set of subcortical structures which integrate information from diverse brain areas to coordinate vital behaviors including movement, reward, and motivational processes. The striatum is the main input center of the basal ganglia which sends projections to the output nuclei via two pathways, the direct striatonigral pathway and the indirect striatopallidal pathway. These two pathways work together to modulate behavior and imbalance of these pathways can have profound physiological consequences. DARPP-32 is a dual function kinase/phosphatase inhibitor which has been shown to be a key mediator of signaling in both striatonigral and triatopallidal neurons. A variety of therapeutic agents and drugs of abuse can affect the phosphorylation of DARPP-32. Psychostimulants such as cocaine increase DARPP-32 phosphorylation at its main regulatory site, T34. Paradoxically, antipsychotics such as haloperidol also increase T34 phosphorylation to a similar degree. Despite this similar biochemical regulation, psychostimulants and antipsychotics have opposing behavioral and clinical effects. We hypothesized that these drugs act via the same biochemical pathway but in distinct populations of striatal neurons. To directly test this idea, we generated BAC transgenic mice which express epitope tagged DARPP-32 selectively in striatonigral and striatopallidal neurons using the D1 and D2 receptor promoters. We developed a protocol to immunoprecipitate DARPP-32 from drug treated mice and study phosphorylation in a cell-type specific manner. Using this new methodology we demonstrate that the increases in T34 phosphorylation with acute cocaine and haloperidol are restricted to striatonigral and striatopallidal neurons, respectively. Additionally, we show that the changes in DARPP-32 phosphorylation induced by a variety of drugs targeting the striatum have cell-type specific patterns. In a complimentary approach, we generated conditional knock-out mice in which DARPP-32 is selectively deleted in striatonigral or striatopallidal neurons. This allowed us to study the behavioral consequences of alteration in the direct and indirect pathways on psychostimulant and antipsychotic mediated locomotor behavior. These studies provided direct evidence for the theory that the direct and indirect pathways exert opposing influences on locomotor behavior. Additionally, we showed that dopamine can differentially modulate activity in these pathways resulting in a synergistic stimulation of locomotor activity

    Corticostriatal Transmission Is Selectively Enhanced in Striatonigral Neurons with Postnatal Loss of Tsc1.

    Get PDF
    mTORC1 is a central signaling hub that integrates intra- and extracellular signals to regulate a variety of cellular metabolic processes. Mutations in regulators of mTORC1 lead to neurodevelopmental disorders associated with autism, which is characterized by repetitive, inflexible behaviors. These behaviors may result from alterations in striatal circuits that control motor learning and habit formation. However, the consequences of mTORC1 dysregulation on striatal neuron function are largely unknown. To investigate this, we deleted the mTORC1 negative regulator Tsc1 from identified striatonigral and striatopallidal neurons and examined how cell-autonomous upregulation of mTORC1 activity affects their morphology and physiology. We find that loss of Tsc1 increases the excitability of striatonigral, but not striatopallidal, neurons and selectively enhances corticostriatal synaptic transmission. These findings highlight the critical role of mTORC1 in regulating striatal activity in a cell type- and input-specific manner, with implications for striatonigral pathway dysfunction in neuropsychiatric disease

    Combinatorial Expression of Grp and Neurod6 Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability

    Get PDF
    Midbrain dopamine neurons project to numerous targets throughout the brain to modulate various behaviors and brain states. Within this small population of neurons exists significant heterogeneity based on physiology, circuitry, and disease susceptibility. Recent studies have shown that dopamine neurons can be subdivided based on gene expression; however, the extent to which genetic markers represent functionally relevant dopaminergic subpopulations has not been fully explored. Here we performed single-cell RNA-sequencing of mouse dopamine neurons and validated studies showing that Neurod6 and Grp are selective markers for dopaminergic subpopulations. Using a combination of multiplex fluorescent in situ hybridization, retrograde labeling, and electrophysiology in mice of both sexes, we defined the anatomy, projection targets, physiological properties, and disease vulnerability of dopamine neurons based on Grp and/or Neurod6 expression. We found that the combinatorial expression of Grp and Neurod6 defines dopaminergic subpopulations with unique features. Grp+/Neurod6+ dopamine neurons reside in the ventromedial VTA, send projections to the medial shell of the nucleus accumbens, and have noncanonical physiological properties. Grp+/Neurod6- dopamine neurons are found in the VTA as well as in the ventromedial portion of the SNc, where they project selectively to the dorsomedial striatum. Grp-/Neurod6+ dopamine neurons represent a smaller VTA subpopulation, which is preferentially spared in a 6-OHDA model of Parkinson's disease. Together, our work provides detailed characterization of Neurod6 and Grp expression in the midbrain and generates new insights into how these markers define functionally relevant dopaminergic subpopulations

    Current Approaches and Future Directions for the Treatment of mTORopathies

    No full text
    The mechanistic target of rapamycin (mTOR) is a kinase at the center of an evolutionarily conserved signaling pathway that orchestrates cell growth and metabolism. mTOR responds to an array of intra- and extracellular stimuli and in turn controls multiple cellular anabolic and catabolic processes. Aberrant mTOR activity is associated with numerous diseases, with particularly profound impact on the nervous system. mTOR is found in two protein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are governed by different upstream regulators and have distinct cellular actions. Mutations in genes encoding for mTOR regulators result in a collection of neurodevelopmental disorders known as mTORopathies. While these disorders can affect multiple organs, neuropsychiatric conditions such as epilepsy, intellectual disability, and autism spectrum disorder have a major impact on quality of life. The neuropsychiatric aspects of mTORopathies have been particularly challenging to treat in a clinical setting. Current therapeutic approaches center on rapamycin and its analogs, drugs that are administered systemically to inhibit mTOR activity. While these drugs show some clinical efficacy, adverse side effects, incomplete suppression of mTOR targets, and lack of specificity for mTORC1 or mTORC2 may limit their utility. An increased understanding of the neurobiology of mTOR and the underlying molecular, cellular, and circuit mechanisms of mTOR-related disorders will facilitate the development of improved therapeutics. Animal models of mTORopathies have helped unravel the consequences of mTOR pathway mutations in specific brain cell types and developmental stages, revealing an array of disease-related phenotypes. In this review, we discuss current progress and potential future directions for the therapeutic treatment of mTORopathies with a focus on findings from genetic mouse models

    Temporal dynamics of a homeostatic pathway controlling neural network activity

    Get PDF
    Neurons use a variety of mechanisms to homeostatically regulate neural network activity in order to maintain firing in a bounded range. One such process involves the bi-directional modulation of excitatory synaptic drive in response to chronic changes in network activity. Down-scaling of excitatory synapses in response to high activity requires Arc-dependent endocytosis of glutamate receptors. However, the temporal dynamics and signaling pathways regulating Arc during homeostatic plasticity are not well understood. Here we determine the relative contribution of transcriptional and translational control in the regulation of Arc, the signaling pathways responsible for the activity-dependent production of Arc, and the time course of these signaling events as they relate to the homeostatic adjustment of network activity in hippocampal neurons. We find that an ERK1/2-dependent transcriptional pathway active within 1-2 hours of up-regulated network activity induces Arc leading to a restoration of network spiking rates within twelve hours. Under basal and low activity conditions, specialized mechanisms are in place to rapidly degrade Arc mRNA and protein such that they have half-lives of less than one hour. In addition, we find that while mTOR signaling is regulated by network activity on a similar time scale, mTOR-dependent translational control is not a major regulator of Arc production or degradation suggesting that the signaling pathways underlying homeostatic plasticity are distinct from those mediating synapse-specific plasticity
    corecore