24,782 research outputs found

    A Note on the Importance of Weak Convergence Rates for SPDE Approximations in Multilevel Monte Carlo Schemes

    Full text link
    It is a well-known rule of thumb that approximations of stochastic partial differential equations have essentially twice the order of weak convergence compared to the corresponding order of strong convergence. This is already known for many approximations of stochastic (ordinary) differential equations while it is recent research for stochastic partial differential equations. In this note it is shown how the availability of weak convergence results influences the number of samples in multilevel Monte Carlo schemes and therefore reduces the computational complexity of these schemes for a given accuracy of the approximations.Comment: 16 pages, 3 figures, updated to version published in the Proceedings of MCQMC1

    The Impact of Provider Choice on Workers' Compensation Costs and Outcomes

    Get PDF
    We study how provider choice in workers' compensation cases affects costs and outcomes. When employees choose the provider, costs are higher and return-to-work outcomes are worse, while physical recovery is the same although satisfaction with medical care is higher. The higher costs and worse return-to-work outcomes associated with employee choice arise largely when employees selected a new provider, rather than a provider with whom the worker had a pre-existing relationship. The findings lend some support to recent policy changes limiting workers' ability to choose a provider with whom they do not have a prior relationship.

    Hitchhiking transport in quasi-one-dimensional systems

    Full text link
    In the conventional theory of hopping transport the positions of localized electronic states are assumed to be fixed, and thermal fluctuations of atoms enter the theory only through the notion of phonons. On the other hand, in 1D and 2D lattices, where fluctuations prevent formation of long-range order, the motion of atoms has the character of the large scale diffusion. In this case the picture of static localized sites may be inadequate. We argue that for a certain range of parameters, hopping of charge carriers among localization sites in a network of 1D chains is a much slower process than diffusion of the sites themselves. Then the carriers move through the network transported along the chains by mobile localization sites jumping occasionally between the chains. This mechanism may result in temperature independent mobility and frequency dependence similar to that for conventional hopping.Comment: a few typos correcte

    Three-dimensional unstructured grid generation via incremental insertion and local optimization

    Get PDF
    Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details

    Exploratory topic modeling with distributional semantics

    Full text link
    As we continue to collect and store textual data in a multitude of domains, we are regularly confronted with material whose largely unknown thematic structure we want to uncover. With unsupervised, exploratory analysis, no prior knowledge about the content is required and highly open-ended tasks can be supported. In the past few years, probabilistic topic modeling has emerged as a popular approach to this problem. Nevertheless, the representation of the latent topics as aggregations of semi-coherent terms limits their interpretability and level of detail. This paper presents an alternative approach to topic modeling that maps topics as a network for exploration, based on distributional semantics using learned word vectors. From the granular level of terms and their semantic similarity relations global topic structures emerge as clustered regions and gradients of concepts. Moreover, the paper discusses the visual interactive representation of the topic map, which plays an important role in supporting its exploration.Comment: Conference: The Fourteenth International Symposium on Intelligent Data Analysis (IDA 2015

    Cost analysis of composite fan blade manufacturing processes

    Get PDF
    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items

    Phonon-assisted robust and deterministic two-photon biexciton preparation in a quantum dot

    Full text link
    We investigate both experimentally and theoretically a simple yet more robust and flexible alternative to Rabi oscillation-type biexciton preparation protocols traditionally used for semiconductor quantum dots. The quantum dot is excited by a strong laser pulse positively detuned from the two-photon resonance yielding an on demand initialization of the biexciton state by making use of the phonon-induced thermalization of the photon dressed states. It is shown that for excitation pulses in the picosecond range, a stable and high fidelity of up to fXX=0.98±0.01f_{XX}=0.98\pm 0.01 is reached. Notably, the generated photons show similar coherence properties as measured in the resonant two-photon scheme. This protocol is a powerful tool for the control of complex solid state systems combining radiative cascades, entanglement and resonant cavity modes

    A simple, efficient, and general treatment of the singularities in Hartree-Fock and exact-exchange Kohn-Sham methods for solids

    Full text link
    We present a general scheme for treating the integrable singular terms within exact exchange (EXX) Kohn-Sham or Hartree-Fock (HF) methods for periodic solids. We show that the singularity corrections for treating these divergencies depend only on the total number and the positions of k-points and on the lattice vectors, in particular the unit cell volume, but not on the particular positions of atoms within the unit cell. The method proposed here to treat the singularities constitutes a stable, simple to implement, and general scheme that can be applied to systems with arbitrary lattice parameters within either the EXX Kohn-Sham or the HF formalism. We apply the singularity correction to a typical symmetric structure, diamond, and to a more general structure, trans-polyacetylene. We consider the effect of the singularity corrections on volume optimisations and k-point convergence. While the singularity corrections clearly depends on the total number of k-points, it exhibits a remarkably small dependence upon the choice of the specific arrangement of the k-points.Comment: 24 pages, 5 Figures, re-submitted to Phys. Rev. B after revision

    Seasonal observation of Mars

    Get PDF
    The International Ultraviolet Explorer detected the Hartley bands of ozone in the spectrum of Mars. Seasonal observations show a variation in the north consistent with the measurement of Mariner 9. Observations during Martian late fall in the south were also made
    corecore