229 research outputs found
Loschmidt Echo and Berry phase of the quantum system coupled to the XY spin chain: Proximity to quantum phase transition
We study the Loschmidt echo (LE) of a coupled system consisting of a central
spin and its surrounding environment described by a general XY spin-chain
model. The quantum dynamics of the LE is shown to be remarkably influenced by
the quantum criticality of the spin chain. In particular, the decaying behavior
of the LE is found to be controlled by the anisotropy parameter of the spin
chain. Furthermore, we show that due to the coupling to the spin chain, the
ground-state Berry phase for the central spin becomes nonanalytical and its
derivative with respect to the magnetic parameter in spin chain
diverges along the critical line , which suggests an alternative
measurement of the quantum criticality of the spin chain.Comment: 15 pages, 5 figure
Flow-sensitive type-based heap cloning
By respecting program control-flow, flow-sensitive pointer analysis promises more precise results than its flow-insensitive counterpart. However, existing heap abstractions for C and C++ flow-sensitive pointer analyses model the heap by creating a single abstract heap object for each memory allocation. Two runtime heap objects which originate from the same allocation site are imprecisely modelled using one abstract object, which makes them share the same imprecise points-to sets and thus reduces the benefit of analysing heap objects flow-sensitively. On the other hand, equipping flow-sensitive analysis with context-sensitivity, whereby an abstract heap object would be created (cloned) per calling context, can yield a more precise heap model, but at the cost of uncontrollable analysis overhead when analysing larger programs. This paper presents TypeClone, a new type-based heap model for flow-sensitive analysis. Our key insight is to differentiate concrete heap objects lazily using type information at use sites within the program control-flow (e.g., when accessed via pointer dereferencing) for programs which conform to the strict aliasing rules set out by the C and C++ standards. The novelty of TypeClone lies in its lazy heap cloning: an untyped abstract heap object created at an allocation site is killed and replaced with a new object (i.e. a clone), uniquely identified by the type information at its use site, for flow-sensitive points-to propagation. Thus, heap cloning can be performed within a flow-sensitive analysis without the need for context-sensitivity. Moreover, TypeClone supports new kinds of strong updates for flow-sensitive analysis where heap objects are filtered out from imprecise points-to relations at object use sites according to the strict aliasing rules. Our method is neither strictly superior nor inferior to context-sensitive heap cloning, but rather, represents a new dimension that achieves a sweet spot between precision and efficiency. We evaluate our analysis by comparing TypeClone with state-of-the-art sparse flow-sensitive points-to analysis using the 12 largest programs in GNU Coreutils. Our experimental results also confirm that TypeClone is more precise than flow-sensitive pointer analysis and is able to, on average, answer over 15% more alias queries with a no-alias result
Object Versioning for Flow-Sensitive Pointer Analysis
Flow-sensitive points-to analysis provides better precision than its flow-insensitive counterpart. Traditionally performed on the control-flow graph, it incurs heavy analysis overhead. For performance, staged flow-sensitive analysis (SFS) is conducted on a pre-computed def-use (value-flow) graph where points-to sets of variables are propagated across def-use chains sparsely rather than across control-flow in the control-flow graph. SFS makes the propagation of different objects' points-to sets sparse (multiple-object sparsity), however, it suffers from redundant propagation between instructions of the same object's points-to sets (single-object sparsity). The points-to set of an object is often duplicated, resulting in redundant propagation and storage, especially in real-world heap-intensive programs. We notice that a simple graph prelabelling extension can identify much of this redundancy in a pre-analysis. With this pre-analysis, multiple nodes (instructions) in the value-flow graph can share an individual memory object's points-to set rather than each node maintaining its own points-to set for that single object. We present object versioning for flow-sensitive points-to analysis, a finer single-object sparsity technique which maintains the same precision while allowing us to avoid much of the redundancy present in propagating and storing points-to sets. Our experiments conducted on 15 open-source programs, when compared with SFS, show that our approach runs up to 26.22× faster (5.31× on average), and reduces memory usage by up to 5.46× (2.11 × on average)
Phase diagram of the S=1/2 quantum spin chain with bond alternation
We study the ground state properties of the bond alternating quantum
spin chain whose Hamiltonian is H=\sum_j (S_{2j}^x S_{2j+1}^x +S_{2j}^y
S_{2j+1}^y +\lambda S_{2j}^z S_{2j+1}^z ) +\beta \sum_j {\bf S}_{2j-1} \cdot
{\bf S}_{2j} . When , the ground state is a collection of local
singlets with a finite excitation gap. In the limit of strong ferromagnetic
coupling , this is equivalent to the
Hamiltonian. It has several ground state phases in the - plane
including the gapful Haldane phase. They are characterized by a full breakdown,
partial breakdowns and a non-breakdown of the hidden discrete
symmetry. The ground state phase diagram is obtained by series expansions.Comment: 25 pages, RevTex 2.0, 9 Figures available on request, Tec.rep. of
ISSP No.A265
Population structure of the predatory mite Neoseiulus womersleyi in a tea field based on an analysis of microsatellite DNA markers
The predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae) is an important natural enemy of the Kanzawa spider mite, Tetranychus kanzawaki Kishida (Acari: Tetranychidae), in tea fields. Attraction and preservation of natural enemies by habitat management to reduce the need for acaricide sprays is thought to enhance the activity of N. womersleyi. To better conserve N. womersleyi in the field, however, it is essential to elucidate the population genetic structure of this species. To this end, we developed ten microsatellite DNA markers for N. womersleyi. We then evaluated population structure of N. womersleyi collected from a tea field, where Mexican sunflower, Tithonia rotundifolia (Mill.), was planted to preserve N. womersleyi. Seventy-seven adult females were collected from four sites within 200 m. The fixation indexes FST among subpopulations were not significantly different. The kinship coefficients between individuals did not differ significantly within a site as a function of the sampling dates, but the coefficients gradually decreased with increasing distance. Bayesian clustering analysis revealed that the population consisted of three genetic clusters, and that subpopulations within 100 m, including those collected on T. rotundifolia, were genetically similar to each other. Given the previously observed population dynamics of N. womersleyi, it appears that the area inhabited by a given cluster of the mite did not exceed 100 m. The estimation of population structure using microsatellite markers will provide valuable information in conservation biological control
MAP4 Mechanism that Stabilizes Mitochondrial Permeability Transition in Hypoxia: Microtubule Enhancement and DYNLT1 Interaction with VDAC1
Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O2) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization
3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial
Background Liraglutide 3\ub70 mg was shown to reduce bodyweight and improve glucose metabolism after the 56-week period of this trial, one of four trials in the SCALE programme. In the 3-year assessment of the SCALE Obesity and Prediabetes trial we aimed to evaluate the proportion of individuals with prediabetes who were diagnosed with type 2 diabetes. Methods In this randomised, double-blind, placebo-controlled trial, adults with prediabetes and a body-mass index of at least 30 kg/m2, or at least 27 kg/m2 with comorbidities, were randomised 2:1, using a telephone or web-based system, to once-daily subcutaneous liraglutide 3\ub70 mg or matched placebo, as an adjunct to a reduced-calorie diet and increased physical activity. Time to diabetes onset by 160 weeks was the primary outcome, evaluated in all randomised treated individuals with at least one post-baseline assessment. The trial was conducted at 191 clinical research sites in 27 countries and is registered with ClinicalTrials.gov, number NCT01272219. Findings The study ran between June 1, 2011, and March 2, 2015. We randomly assigned 2254 patients to receive liraglutide (n=1505) or placebo (n=749). 1128 (50%) participants completed the study up to week 160, after withdrawal of 714 (47%) participants in the liraglutide group and 412 (55%) participants in the placebo group. By week 160, 26 (2%) of 1472 individuals in the liraglutide group versus 46 (6%) of 738 in the placebo group were diagnosed with diabetes while on treatment. The mean time from randomisation to diagnosis was 99 (SD 47) weeks for the 26 individuals in the liraglutide group versus 87 (47) weeks for the 46 individuals in the placebo group. Taking the different diagnosis frequencies between the treatment groups into account, the time to onset of diabetes over 160 weeks among all randomised individuals was 2\ub77 times longer with liraglutide than with placebo (95% CI 1\ub79 to 3\ub79, p<0\ub70001), corresponding with a hazard ratio of 0\ub721 (95% CI 0\ub713\u20130\ub734). Liraglutide induced greater weight loss than placebo at week 160 (\u20136\ub71 [SD 7\ub73] vs 121\ub79% [6\ub73]; estimated treatment difference 124\ub73%, 95% CI 124\ub79 to 123\ub77, p<0\ub70001). Serious adverse events were reported by 227 (15%) of 1501 randomised treated individuals in the liraglutide group versus 96 (13%) of 747 individuals in the placebo group. Interpretation In this trial, we provide results for 3 years of treatment, with the limitation that withdrawn individuals were not followed up after discontinuation. Liraglutide 3\ub70 mg might provide health benefits in terms of reduced risk of diabetes in individuals with obesity and prediabetes. Funding Novo Nordisk, Denmark
- …