276 research outputs found

    Human monoclonal islet specific autoantibodies share features of islet cell and 64 kDa antibodies

    Get PDF
    The first human monoclonal islet cell antibodies of the IgG class (MICA 1-6) obtained from an individual with Type 1 (insulin-dependent) diabetes mellitus were cytoplasmic islet cell antibodies selected by the indirect immunofluorescence test on pancreas sections. Surprisingly, they all recognized the 64 kDa autoantigen glutamate decarboxylase. In this study we investigated which typical features of cytoplasmic islet cell antibodies are represented by these monoclonals. We show by double immunofluorescence testing that MICA 1-6 stain pancreatic beta cells which is in agreement with the beta-cell specific expression of glutamate decarboxylase. In contrast an islet-reactive IgM monoclonal antibody obtained from a pre-diabetic individual stained all islet cells but lacked the tissue specificity of MICA 1-6 and must therefore be considered as a polyreactive IgM-antibody. We further demonstrate that MICA 1-6 revealed typical features of epitope sensitivity to biochemical treatment of the target tissue which has been demonstrated for islet cell antibodies, and which has been used to argue for a lipid rather than a protein nature of target antigens. Our results provide direct evidence that the epitopes recognized by the MICA are destroyed by methanol/chloroform treatment but reveal a high stability to Pronase digestion compared to proinsulin epitopes. Conformational protein epitopes in glutamate decarboxylase therefore show a sensitivity to biochemical treatment of sections such as ganglioside epitopes. MICA 1-6 share typical features of islet cell and 64 kDa antibodies and reveal that glutamate decarboxylase-reactive islet cell antibodies represent a subgroup of islet cell antibodies present in islet cell antibody-positive sera

    Antibodies to the Mr 64,000 (64K) protein in islet cell antibody positive non-diabetic individuals indicate high risk for impaired Beta-cell function

    Get PDF
    A prospective study of a normal childhood population identified 44 islet cell antibody positive individuals. These subjects were typed for HLA DR and DQ alleles and investigated for the presence of antibodies to the Mr 64,000 (64K) islet cell antigen, complement-fixing islet cell antibodies and radiobinding insulin autoantibodies to determine their potency in detecting subjects with impaired Beta-cell function. At initial testing 64K antibodies were found in six of 44 islet cell antibody positive subjects (13.6%). The same sera were also positive for complement-fixing islet cell antibodies and five of them had insulin autoantibodies. During the follow-up at 18 months, islet cell antibodies remained detectable in 50% of the subjects studied. In all six cases who were originally positive, 64K antibodies were persistently detectable, whereas complement-fixing islet cell antibodies became negative in two of six and insulin autoantibodies in one of five individuals. HLA DR4 (p < 0.005) and absence of asparic acid (Asp) at position 57 of the HLA DQ chain (p < 0.05) were significantly increased in subjects with 64K antibodies compared with control subjects. Of 40 individuals tested in the intravenous glucose tolerance test, three had a first phase insulin response below the first percentile of normal control subjects. Two children developed Type 1 (insulin-dependent) diabetes mellitus after 18 and 26 months, respectively. Each of these subjects was non-Asp homozygous and had persistent islet cell and 64K antibodies. We conclude that 64K antibodies, complement-fixing islet cell antibodies and insulin autoantibodies represent sensitive serological markers in assessing high risk for a progression to Type 1 diabetes in islet cell antibody positive non-diabetic individuals

    A combination of three distinct trafficking signals mediates axonal targeting and presynaptic clustering of GAD65

    Get PDF
    The signals involved in axonal trafficking and presynaptic clustering are poorly defined. Here we show that targeting of the γ-aminobutyric acid–synthesizing enzyme glutamate decarboxylase 65 (GAD65) to presynaptic clusters is mediated by its palmitoylated 60-aa NH2-terminal domain and that this region can target other soluble proteins and their associated partners to presynaptic termini. A Golgi localization signal in aa 1–23 followed by a membrane anchoring signal upstream of the palmitoylation motif are required for this process and mediate targeting of GAD65 to the cytosolic leaflet of Golgi membranes, an obligatory first step in axonal sorting. Palmitoylation of a third trafficking signal downstream of the membrane anchoring signal is not required for Golgi targeting. However, palmitoylation of cysteines 30 and 45 is critical for post-Golgi trafficking of GAD65 to presynaptic sites and for its relative dendritic exclusion. Reduction of cellular cholesterol levels resulted in the inhibition of presynaptic clustering of palmitoylated GAD65, suggesting that the selective targeting of the protein to presynaptic termini is dependent on sorting to cholesterol-rich membrane microdomains. The palmitoylated NH2-terminal region of GAD65 is the first identified protein region that can target other proteins to presynaptic clusters

    Gad65 is recognized by t-cells, but not by antibodies from nod-mice

    Get PDF
    Since the 64kDa-protein glutamic acid decarboxylase (GAD) is one of the major autoantigens in T-cell mediated Type 1 diabetes, its relevance as a T-cell antigen needs to be clarified. After isolation of splenic T-cells from non-obese diabetic (NOD) mice, a useful model for human Type 1 diabetes, we found that these T-cells proliferate spontaneously when incubated with human GAD65, but only marginally after incubation with GAD67, both recombinated in the baculovirus system. No effect was observed with non-diabetic NOD mice or with T-cells from H-2 identical NON-NOD-H-2g7 control mice. It has been published previously that NOD mice develop autoantibodies against a 64kDa protein detected with mouse beta cells. In immunoprecipitation experiments with sera from the same NOD mice and 33S-methionine-labelled GAD, no autoantibody binding could be detected. We conclude firstly that GAD65 is an important T-cell antigen which is relevant early in the development of Type 1 diabetes and secondly that there is an antigenic epitope in the human GAD65 molecule recognized by NOD T-cells, but not by NOD autoantibodies precipitating conformational epitopes. Our results therefore provide further evidence that GAD65 is a T-cell antigen in NOD mice, being possibly also involved in very early processes leading to the development of human Type 1 diabetes

    Association between Antibodies to the MR 67,000 Isoform of Glutamate Decarboxylase (GAD) and Type 1 (Insulin-Dependent) Diabetes Mellitus with Coexisting Autoimmune Polyendocrine Syndrome Type II

    Get PDF
    By using an immunoprecipitation assay, we analysed reactivity of autoantibodies to human recombinant GAD65 and GAD67 in sera from patients with autoimmune polyendocrine syndrome Type II (APS II) with and without Type 1 (insulin-dependent) diabetes mellitus (IDDM) compared to patients with organ-specific autoimmunity. Overall antibodies to GAD65 were correlated with IDDM in all study groups, whereas GAD67 antibodies were associated with IDDM when APS II coexists. Antibodies to GAD65 and GAD67 were detected in 13 (44.8%) and 7 (24.1%) out of 29 APS II patients with IDDM, but in only 4 (13.8%) and 2 (6.9%) out of 29 APS II patients without IDDM, respectively (p < 0.05). In short-standing IDDM (< 1 year), antibodies to GAD67 were significantly more frequent in patients with APS II (5 of 9 [55.6%] subjects) compared to matched diabetic patients without coexisting polyendocrinopathy (1 of 18 [5.6%] subjects) (p < 0.02). The levels of GAD65 (142 ± 90 AU) and GAD67 antibodies (178 ± 95 AU) were significantly higher in patients with polyglandular disease than in patients with isolated IDDM (91 ± 85 AU and 93 ± 57 AU) (p < 0.02). Interestingly, all 11 GAD67 antibody positive subjects also had GAD65 antibodies (p < 0.0001), and in 10 of 11 anti-GAD67 positive sera the GAD67 antibodies could be blocked by either GAD67 or GAD65, suggesting the presence of cross-reactive autoantibodies. No correlation was observed between GAD antibodies and age, sex or any particular associated autoimmune disease, besides IDDM. GAD antibodies were present in only 1 of 6 (16.7%) patients with APS Type I, in 1 of 26 (3.9%) patients with autoimmune thyroid disease but in none of the patients with Addison's disease (n = 16), pernicious anaemia (n = 7) or normal controls (n = 50). Our data suggest distinct antibody specificities reactive to GAD isoforms in APS II and IDDM, which might reflect different mechanisms of autoimmune response in IDDM with coexisting autoimmune polyendocrine autoimmunity

    Zinc Transporter 8 Antibodies Complement GAD and IA-2 Antibodies in the Identification and Characterization of Adult-Onset Autoimmune Diabetes: Non Insulin Requiring Autoimmune Diabetes (NIRAD) 4

    Get PDF
    OBJECTIVE: Zinc transporter 8 (ZnT8) is an islet beta-cell secretory granule membrane protein recently identified as an autoantibody antigen in type 1 diabetes. The aim of this study was to determine the prevalence and role of antibodies to ZnT8 (ZnT8As) in adult-onset diabetes. RESEARCH DESIGN AND METHODS: ZnT8As were measured by a radioimmunoprecipitation assay using recombinant ZnT8 COOH-terminal or NH(2)-terminal proteins in 193 patients with adult-onset autoimmune diabetes having antibodies to either GAD (GADAs) or IA-2 (IA-2As) and in 1,056 antibody-negative patients with type 2 diabetes from the Non Insulin Requiring Autoimmune Diabetes (NIRAD) study. RESULTS: ZnT8As-COOH were detected in 18.6% patients with autoimmune diabetes and 1.4% with type 2 diabetes. ZnT8As-NH(2) were rare. ZnT8As were associated with younger age and a high GADA titer. The use of GADAs, IA-2As, and ZnT8As in combination allowed a stratification of clinical phenotype, with younger age of onset of diabetes and characteristics of more severe insulin deficiency (higher fasting glucose and A1C, lower BMI, total cholesterol, and triglycerides) in patients with all three markers, with progressive attenuation in patients with two, one, and no antibodies (all P(trend) < 0.001). Autoantibody titers, association with high-risk HLA genotypes, and prevalence of thyroid peroxidase antibodies followed the same trend (all P < 0.001). CONCLUSIONS: ZnT8As are detectable in a proportion of patients with adult-onset autoimmune diabetes and seem to be a valuable marker to differentiate clinical phenotypes

    Antibodies to a 64,000 Mr human islet cell antigen precede the clinical onset of insulin-dependent diabetes

    Get PDF
    Antibodies in sera from newly diagnosed insulin-dependent diabetes mellitus (IDDM) patients are directed to a human islet cell protein of relative molecular mass (Mr) 64,000. Since IDDM seems to develop after a prodromal period of beta-cell autoimmunity, this study has examined whether 64,000 Mr antibodies could be detected in 14 individuals who subsequently developed IDDM and five first degree relatives who have indications of altered beta-cell function. Sera were screened by immunoprecipitation on total detergent lysates of human islets and positive sera retested on membrane protein preparations. Antibodies to the 64,000 Mr membrane protein were consistently detected in 11/14 IDDM patients, and in all 5 first degree relatives. 10 IDDM patients were already positive in the first samples, obtained 4-91 mo before the clinical onset of IDDM, whereas 1 patient progressed to a high 64,000 Mr immunoreactivity, at a time where a commencement of a decline in beta-cell function was detected. 64,000 Mr antibodies were detected before islet cell cytoplasmic antibodies (ICCA) in two patients. In the control groups of 21 healthy individuals, 36 patients with diseases of the thyroid and 5 SLE patients, the 64,000 Mr antibodies were detected in only one individual, who was a healthy sibling to an IDDM patient. These results suggest that antibodies against the Mr 64,000 human islet protein are an early marker of beta-cell autoimmunity and may be useful to predict a later development of IDDM
    corecore