11 research outputs found

    Reduced platelet hyper-reactivity and platelet-leukocyte aggregation after periodontal therapy

    No full text
    Background: Platelets from untreated periodontitis patients are hyper-reactive and form more platelet-leukocyte complexes compared to cells from individuals without periodontitis. It is not known whether the improvement of the periodontal condition achievable by therapy has beneficial effects on the platelet function. We aimed to assess the effects of periodontal therapy on platelet reactivity. Methods: Patients with periodontitis (n=25) but unaffected by any other medical condition or medication were included and donated blood before and after periodontal therapy. Reactivity to ADP or oral bacteria was assessed by flow cytometric analysis of membrane markers (binding of PAC-1, P-selectin, CD63) and platelet-leukocyte complex formation. Reactivity values were expressed as ratio between the stimulated and unstimulated sample. Plasma levels of soluble (s) P-selectin were determined by enzyme-linked immunosorbent assay (ELISA). Results: Binding of PAC-1, the expression of P-selectin and CD63 in response to the oral bacterium P. gingivalis were lower at recall (1.4±1.1, 1.5±1.2, and 1.0±0.1) than at baseline (2.7±4.1, P=0.026, 6.0±12.5, P=0.045, and 2.7±6.7, P=0.042, respectively). Formation of platelet-leukocyte complexes in response to P. gingivalis was also reduced at recall compared to baseline (1.2±0.7 vs. 11.4±50.5, P=0.045). sP-selectin levels were significantly increased post-therapy. Conclusions: In periodontitis patients, the improvement of the periodontal condition is paralleled by a reduction in platelet hyper-reactivity. We suggest that periodontal therapy, as an intervention for improved oral health, can facilitate the management of thrombotic risk, and on the long term can contribute to the prevention of cardiovascular events in patients at risk. Trial registration: Current Controlled Trials identifier ISRCTN36043780. Retrospectively registered 25 September 2013

    A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting

    Get PDF
    Cells of the innate and adaptive immune system are key factors in the progression of athero-sclerotic plaque, leading to plaque instability and rupture, potentially resulting in acute ather-othrombotic events such as coronary artery disease, cerebrovascular disease and peripheral arterial disease. Here, we describe the cloning, expression, purification, and immunoreactivity assessment of a recombinant single-chain variable fragment (scFv) derived from a human anti-αIIbβ3 antibody (HuAb) selected to target atheromatous lesions for the presence of platelets. Indeed, platelets within atheroma plaques have been shown to play a role in inflammation, in platelet-leucocyte aggregates and in thrombi formation and might thus be considered relevant biomarkers of atherosclerotic progression. The DNA sequence that encodes the anti-αIIbβ3 TEG4 scFv previously obtained from a phage-display selection on activated platelets, was inserted into the eukaryote vector (pPICZαA) in fusion with a tag sequence encoding 2 cysteines useable for specific probes grafting experiments. The recombinant protein was expressed at high yields in Pichia pastoris (30 mg/L culture). The advantage of P. pastoris as an expression system is the production and secretion of recombinant proteins in the supernatant, ruling out the difficulties encountered when scFv are produced in the cytoplasm of bacteria (low yield, low solubility and reduced affinity). The improved conditions allowed for the recovery of highly purified and biologically active scFv fragments ready to be grafted in a site-directed way to nanoparticles for the imaging of atherosclerotic plaques involving inflammatory processes and thus at high risk of instability

    The circulating non-coding RNA landscape for biomarker research : lessons and prospects from cardiovascular diseases

    No full text
    © 2018 Springer Nature Publishing AGPervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.info:eu-repo/semantics/publishedVersio

    HDL and atherothrombotic vascular disease

    Get PDF
    High-density lipoproteins (HDLs) exert many beneficial effects which may help to protect against the development or progression of atherosclerosis or even facilitate lesion regression. These activities include promoting cellular cholesterol efflux, protecting low-density lipoproteins (LDLs) from modification, preserving endothelial function, as well as anti-inflammatory and antithrombotic effects. However, questions remain about the relative importance of these activities for atheroprotection. Furthermore, the many molecules (both lipids and proteins) associated with HDLs exert both distinct and overlapping activities, which may be compromised by inflammatory conditions, resulting in either loss of function or even gain of dysfunction. This complexity of HDL functionality has so far precluded elucidation of distinct structure-function relationships for HDL or its components. A better understanding of HDL metabolism and structure-function relationships is therefore crucial to exploit HDLs and its associated components and cellular pathways as potential targets for anti-atherosclerotic therapies and diagnostic markers

    The Role of (Modified) Lipoproteins in Vascular Function: A Duet Between Monocytes and the Endothelium

    No full text
    corecore