4,009 research outputs found

    Inhomogeneity of Vortices in 2D Classical XY-Model: A Microcanonical Monte Carlo Simulation Study

    Get PDF

    Energy, Fluctuation and the 2D Classical XY-Model

    Get PDF

    Confidence and Backaction in the Quantum Filter Equation

    Full text link
    We study the confidence and backaction of state reconstruction based on a continuous weak measurement and the quantum filter equation. As a physical example we use the traditional model of a double quantum dot being continuously monitored by a quantum point contact. We examine the confidence of the estimate of a state constructed from the measurement record, and the effect of backaction of that measurement on that state. Finally, in the case of general measurements we show that using the relative entropy as a measure of confidence allows us to define the lower bound on the confidence as a type of quantum discord.Comment: 9 pages, 6 figure

    A note on q-Euler numbers and polynomials

    Full text link
    The purpose of this paper is to construct q-Euler numbers and polynomials by using p-adic q-integral equations on Zp. Finally, we will give some interesting formulae related to these q-Euler numbers and polynomials.Comment: 6 page

    Tunneling and percolation transport regimes in segregated composites

    Full text link
    We consider the problem of electron transport in segregated conductor-insulator composites in which the conducting particles are connected to all others via tunneling conductances, thus forming a global tunnelingconnected resistor network. Segregation is induced by the presence of large insulating particles, which forbid the much smaller conducting fillers from occupying uniformly the three-dimensional volume of the composite. By considering both colloidal-like and granular-like dispersions of the conducting phase, modeled respectively by dispersions in the continuum and in the lattice, we evaluate by Monte Carlo simulations the effect of segregation on the composite conductivity {\sigma}, and show that an effective-medium theory applied to the tunneling network reproduces accurately the Monte Carlo results. The theory clarifies that the main effect of segregation in the continuum is that of reducing the mean interparticle distances, leading to a strong enhancement of the conductivity. In the lattice-segregation case the conductivity enhancement is instead given by the lowering of the percolation thresholds for first and beyond-first nearest neighbors. Our results generalize to segregated composites the tunneling-based description of both the percolation and hopping regimes introduced previously for homogeneous disordered systems.Comment: 9 pages, 6 figure

    Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo

    Get PDF
    Autoreactive B lymphocytes first encountering self-antigens in peripheral tissues are normally regulated by induction of anergy or apoptosis. According to the "two-signal" model, antigen recognition alone should render B cells tolerant unless T cell help or inflammatory signals such as lipopolysaccharide are provided. However, no such signals seem necessary for responses to T-independent type 2 (TI-2) antigens, which are multimeric antigens lacking T cell epitopes and Toll-like receptor ligands. How then do mature B cells avoid making a TI-2-like response to multimeric self-antigens? We present evidence that TI-2 antigens decorated with ligands of inhibitory sialic acid-binding Ig-like lectins (siglecs) are poorly immunogenic and can induce tolerance to subsequent challenge with immunogenic antigen. Two siglecs, CD22 and Siglec-G, contributed to tolerance induction, preventing plasma cell differentiation or survival. Although mutations in CD22 and its signaling machinery have been associated with dysregulated B cell development and autoantibody production, previous analyses failed to identify a tolerance defect in antigen-specific mutant B cells. Our results support a role for siglecs in B cell self-/nonself-discrimination, namely suppressing responses to self-associated antigens while permitting rapid "missing self"-responses to unsialylated multimeric antigens. The results suggest use of siglec ligand antigen constructs as an approach for inducing tolerance

    Dephasing times in quantum dots due to elastic LO phonon-carrier collisions

    Get PDF
    Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in QD's: second-order elastic interaction between quantum dot charge carriers and LO-phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing.Comment: 4 pages, 1 figure, accepted for Phys. Rev. Let

    Nuclear Spins in a Nanoscale Device for Quantum Information Processing

    Get PDF
    Coherent oscillations between any two levels from four nuclear spin states of I=3/2 have been demonstrated in a nanometre-scale NMR semiconductor device, where nuclear spins are all-electrically controlled. Using this device, we discuss quantum logic operations on two fictitious qubits of the I=3/2 system, and propose a quantum state tomography scheme based on the measurement of longitudinal magnetization, MzM_z.Comment: 5 pages, 4 figure

    Natural variation in immune responses to neonatal mycobacterium bovis bacillus calmette-guerin (BCG) vaccination in a cohort of Gambian infants

    Get PDF
    Background There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN- responses to BCG in this age group are poorly described. Characterisation of IFN- responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy. Methodology/Principal Findings 236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89-98% depending on the antigen) made IFN- responses and there was significant correlation between IFN- responses to the different mycobacterial antigens (Spearman’s coefficient ranged from 0.340 to 0.675, p=10-6-10-22). IL-13 and IL-5 responses were generally low and there were more non-responders (33-75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens Conclusions/Significance Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN- responses
    corecore