30,112 research outputs found

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure

    Coulomb gap in the one-particle density of states in three-dimensional systems with localized electrons

    Full text link
    The one-particle density of states (1P-DOS) in a system with localized electron states vanishes at the Fermi level due to the Coulomb interaction between electrons. Derivation of the Coulomb gap uses stability criteria of the ground state. The simplest criterion is based on the excitonic interaction of an electron and a hole and leads to a quadratic 1P-DOS in the three-dimensional (3D) case. In 3D, higher stability criteria, including two or more electrons, were predicted to exponentially deplete the 1P-DOS at energies close enough to the Fermi level. In this paper we show that there is a range of intermediate energies where this depletion is strongly compensated by the excitonic interaction between single-particle excitations, so that the crossover from quadratic to exponential behavior of the 1P-DOS is retarded. This is one of the reasons why such exponential depletion was never seen in computer simulations.Comment: 6 pages, 1 figur

    Three charged particles in the continuum. Astrophysical examples

    Full text link
    We suggest a new adiabatic approach for description of three charged particles in the continuum. This approach is based on the Coulomb-Fourier transformation (CFT) of three body Hamiltonian, which allows to develop a scheme, alternative to Born-Oppenheimer one. The approach appears as an expansion of the kernels of corresponding integral transformations in terms of small mass-ratio parameter. To be specific, the results are presented for the system ppeppe in the continuum. The wave function of a such system is compared with that one which is used for estimation of the rate for triple reaction p+p+ed+ν, p+p+e\to d+\nu, which take place as a step of pppp-cycle in the center of the Sun. The problem of microscopic screening for this particular reaction is discussed

    Fluctuation-Driven Molecular Transport in an Asymmetric Membrane Channel

    Get PDF
    Channel proteins, that selectively conduct molecules across cell membranes, often exhibit an asymmetric structure. By means of a stochastic model, we argue that channel asymmetry in the presence of non-equilibrium fluctuations, fueled by the cell's metabolism as observed recently, can dramatically influence the transport through such channels by a ratchet-like mechanism. For an aquaglyceroporin that conducts water and glycerol we show that a previously determined asymmetric glycerol potential leads to enhanced inward transport of glycerol, but for unfavorably high glycerol concentrations also to enhanced outward transport that protects a cell against poisoning.Comment: REVTeX4, 4 pages, 3 figures; Accepted for publication in Phys. Rev. Let

    QND and higher order effects for a nonlinear meter in an interferometric gravitational wave antenna

    Get PDF
    A new optical topology and signal readout strategy for a laser interferometer gravitational wave detector were proposed recently by Braginsky and Khalili . Their method is based on using a nonlinear medium inside a microwave oscillator to detect the gravitational-wave-induced spatial shift of the interferometer's standing optical wave. This paper proposes a quantum nondemolition (QND) scheme that could be realistically used for such a readout device and discusses a "fundamental" sensitivity limit imposed by a higher order optical effect.Comment: LaTex, 17 pages, 3 figure

    Electrostatics of ions inside the nanopores and trans-membrane channels

    Full text link
    A model of a finite cylindrical ion channel through a phospholipid membrane of width LL separating two electrolyte reservoirs is studied. Analytical solution of the Poisson equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides of membrane. However, even for physiological concentrations of electrolyte, the electrostatic barrier sizes found using the theory are in excellent agreement with the numerical solution of the Poisson equation. The analytical solution is used to calculate the electrostatic potential energy profiles for pores containing charged protein residues. Availability of a semi-exact interionic potential should greatly facilitate the study of ionic transport through nanopores and ion channels

    Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses

    Get PDF
    An analysis is given of thermoelastic noise (thermal noise due to thermoelastic dissipation) in finite sized test masses of laser interferometer gravitational-wave detectors. Finite-size effects increase the thermoelastic noise by a modest amount; for example, for the sapphire test masses tentatively planned for LIGO-II and plausible beam-spot radii, the increase is less than or of order 10 per cent. As a side issue, errors are pointed out in the currently used formulas for conventional, homogeneous thermal noise (noise associated with dissipation which is homogeneous and described by an imaginary part of the Young's modulus) in finite sized test masses. Correction of these errors increases the homogeneous thermal noise by less than or of order 5 per cent for LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review
    corecore