64 research outputs found

    Interface energies in Ising spin glasses

    Full text link
    The replica method has been used to calculate the interface free energy associated with the change from periodic to anti-periodic boundary conditions in finite-dimensional spin glasses. At mean-field level the interface free energy vanishes but after allowing for fluctuation effects, a non-zero interface free energy is obtained which is significantly different from numerical expectations.Comment: 4 pages. Minor changes and clarification

    Microscopic dynamics of thin hard rods

    Full text link
    Based on the collision rules for hard needles we derive a hydrodynamic equation that determines the coupled translational and rotational dynamics of a tagged thin rod in an ensemble of identical rods. Specifically, based on a Pseudo-Liouville operator for binary collisions between rods, the Mori-Zwanzig projection formalism is used to derive a continued fraction representation for the correlation function of the tagged particle's density, specifying its position and orientation. Truncation of the continued fraction gives rise to a generalised Enskog equation, which can be compared to the phenomenological Perrin equation for anisotropic diffusion. Only for sufficiently large density do we observe anisotropic diffusion, as indicated by an anisotropic mean square displacement, growing linearly with time. For lower densities, the Perrin equation is shown to be an insufficient hydrodynamic description for hard needles interacting via binary collisions. We compare our results to simulations and find excellent quantitative agreement for low densities and qualtitative agreement for higher densities.Comment: 21 pages, 6 figures, v2: clarifications and improved readabilit

    Extremal Optimization for Sherrington-Kirkpatrick Spin Glasses

    Full text link
    Extremal Optimization (EO), a new local search heuristic, is used to approximate ground states of the mean-field spin glass model introduced by Sherrington and Kirkpatrick. The implementation extends the applicability of EO to systems with highly connected variables. Approximate ground states of sufficient accuracy and with statistical significance are obtained for systems with more than N=1000 variables using ±J\pm J bonds. The data reproduces the well-known Parisi solution for the average ground state energy of the model to about 0.01%, providing a high degree of confidence in the heuristic. The results support to less than 1% accuracy rational values of ω=2/3\omega=2/3 for the finite-size correction exponent, and of ρ=3/4\rho=3/4 for the fluctuation exponent of the ground state energies, neither one of which has been obtained analytically yet. The probability density function for ground state energies is highly skewed and identical within numerical error to the one found for Gaussian bonds. But comparison with infinite-range models of finite connectivity shows that the skewness is connectivity-dependent.Comment: Substantially revised, several new results, 5 pages, 6 eps figures included, (see http://www.physics.emory.edu/faculty/boettcher/ for related information

    Asymptotics and Dimensional Dependence of the Number of Critical Points of Random Holomorphic Sections

    Full text link
    We prove two conjectures from [M. R. Douglas, B. Shiffman and S. Zelditch, Critical points and supersymmetric vacua, II: Asymptotics and extremal metrics. J. Differential Geom. 72 (2006), no. 3, 381-427] concerning the expected number of critical points of random holomorphic sections of a positive line bundle. We show that, on average, the critical points of minimal Morse index are the most plentiful for holomorphic sections of {\mathcal O}(N) \to \CP^m and, in an asymptotic sense, for those of line bundles over general K\"ahler manifolds. We calculate the expected number of these critical points for the respective cases and use these to obtain growth rates and asymptotic bounds for the total expected number of critical points in these cases. This line of research was motivated by landscape problems in string theory and spin glasses.Comment: 14 pages, corrected typo

    Large Deviations of the Free-Energy in Diluted Mean-Field Spin-Glass

    Full text link
    Sample-to-sample free energy fluctuations in spin-glasses display a markedly different behaviour in finite-dimensional and fully-connected models, namely Gaussian vs. non-Gaussian. Spin-glass models defined on various types of random graphs are in an intermediate situation between these two classes of models and we investigate whether the nature of their free-energy fluctuations is Gaussian or not. It has been argued that Gaussian behaviour is present whenever the interactions are locally non-homogeneous, i.e. in most cases with the notable exception of models with fixed connectivity and random couplings Jij=±J~J_{ij}=\pm \tilde{J}. We confirm these expectation by means of various analytical results. In particular we unveil the connection between the spatial fluctuations of the populations of populations of fields defined at different sites of the lattice and the Gaussian nature of the free-energy fluctuations. On the contrary on locally homogeneous lattices the populations do not fluctuate over the sites and as a consequence the small-deviations of the free energy are non-Gaussian and scales as in the Sherrington-Kirkpatrick model

    The integrated density of states of the random graph Laplacian

    Full text link
    We analyse the density of states of the random graph Laplacian in the percolating regime. A symmetry argument and knowledge of the density of states in the nonpercolating regime allows us to isolate the density of states of the percolating cluster (DSPC) alone, thereby eliminating trivially localised states due to finite subgraphs. We derive a nonlinear integral equation for the integrated DSPC and solve it with a population dynamics algorithm. We discuss the possible existence of a mobility edge and give strong evidence for the existence of discrete eigenvalues in the whole range of the spectrum.Comment: 4 pages, 1 figure. Supplementary material available at http://www.theorie.physik.uni-goettingen.de/~aspel/data/spectrum_supplement.pd

    Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation

    Full text link
    We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modelled as a stochastic process, which on average decreases the translational energy (cooling), but allows for fluctuations in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to suppress inelastic collapse. This allows us to study large systems for long times in the truely inelastic regime. During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide and merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping of the internal vibrations. Inelatic collapse is avoided also in this case but in contrast to the conservative system the translational energy decays according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for publication in Phys. Rev.

    Granular cooling of hard needles

    Full text link
    We have developed a kinetic theory of hard needles undergoing binary collisions with loss of energy due to normal and tangential restitution. In addition, we have simulated many particle systems of granular hard needles. The theory, based on the assumption of a homogeneous cooling state, predicts that granular cooling of the needles proceeds in two stages: An exponential decay of the initial configuration to a state where translational and rotational energies take on a time independent ratio (not necessarily unity), followed by an algebraic decay of the total kinetic energy t2\sim t^{-2}. The simulations support the theory very well for low and moderate densities. For higher densities, we have observed the onset of the formation of clusters and shear bands.Comment: 7 pages, 8 figures; major changes, extended versio

    Size effect on magnetism of Fe thin films in Fe/Ir superlattices

    Full text link
    In ferromagnetic thin films, the Curie temperature variation with the thickness is always considered as continuous when the thickness is varied from nn to n+1n+1 atomic planes. We show that it is not the case for Fe in Fe/Ir superlattices. For an integer number of atomic planes, a unique magnetic transition is observed by susceptibility measurements, whereas two magnetic transitions are observed for fractional numbers of planes. This behavior is attributed to successive transitions of areas with nn and n+1n+1 atomic planes, for which the TcT_c's are not the same. Indeed, the magnetic correlation length is presumably shorter than the average size of the terraces. Monte carlo simulations are performed to support this explanation.Comment: LaTeX file with Revtex, 5 pages, 5 eps figures, to appear in Phys. Rev. Let

    Simulations of Ground State Fluctuations in Mean-Field Ising Spin Glasses

    Full text link
    The scaling of fluctuations in the distribution of ground-state energies or costs with the system size N for Ising spin glasses is considered using an extensive set of simulations with the Extremal Optimization heuristic across a range of different models on sparse and dense graphs. These models exhibit very diverse behaviors, and an asymptotic extrapolation is often complicated by higher-order corrections. The clearest picture, in fact, emerges from the study of graph-bipartitioning, a combinatorial optimization problem closely related to spin glasses. Aside from two-spin interactions with discrete bonds, we also consider problems with Gaussian bonds and three-spin interactions, which behave differently to a significant degree.Comment: Much extended version, comparing fluctuations for SK and five other models. Now 20 RevTex-pages, 10 tables, 27 figure
    corecore