593 research outputs found

    The Impact of Family Economic Structure on Dual-Earners’ Career and Family Satisfaction

    Get PDF
    The present study builds on the explanatory power of the “doing gender” perspective to understand the effects of family economic structure on the family and career satisfaction of husbands and wives. Using data from a two-panel, couple-level survey of full-time employed middle-class families in the Northeastern United States, we find that when wives’ earnings increase relative to their husbands’, their career satisfaction significantly increases whereas their husbands’ is significantly depressed. In contrast, family economic structure has little effect on women’ and men’s level of family satisfaction, although we find a significant reduction in family satisfaction among couples who have recently shifted towards a more equal-earner economic structure. Our findings underscore the importance of considering both husbands’ and wives’ attitudes towards work and career in understanding how “gender is done” in couples, and in addressing the resulting family and work relations and dynamics. Focusing on the disjuncture between longstanding gender norms and current employment and earning patterns, we highlight the potential impact of these findings for couples, counselors, and organizations

    Itinerant-electron Ferromagnetism in W(Nb)O3-d

    Full text link
    The crystal structure and the magnetic properties of the W1-xNbxO3-d, (x<0.03) system have been investigated. In contrast to the orthorhombic diamagnetic WO3, the material with x=0.01 is paramagnetic down to 5 K. Introducing of 2.5 at. % of Nb into WO3 leads to a tetragonal structure and to a weak itinerant ferromagnetic ordering below TC= 225 K. The saturation magnetic moment at 5 K is 1.07*10-3 mB, whereas the paramagnetic effective moment is 0.06 mB per mole. This high ratio indicates itinerant ferromagnetism in W0.975Nb0.025O3-d.Comment: accepted to Physica

    GRB060218 as a Tidal Disruption of a White Dwarf by an Intermediate Mass Black Hole

    Get PDF
    A highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova SN2006aj has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object were put forward to explain its multiwavelength signature. We propose that the source is naturally explained by another channel, a tidal disruption of a white dwarf (WD) by an intermediate mass black hole (IMBH). The tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectrum with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron from the expanding jet front. The accretion rate temporal dependence Mdot(t) in a tidal disruption provides a good fit to soft X-ray lightcurve. The IMBH mass is found to be about 10^4Msun in three independent estimates: (1) fitting tidal disruption Mdot(t) to soft X-ray lightcurve; (2) computing the jet base radius in a jet photospheric emission model; (3) inferring the central BH mass based on a host dwarf galaxy stellar mass. The supernova position is consistent with the center of the host galaxy, while low supernova ejecta mass is consistent with a WD mass. High expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by Swift satellite over several years at GRB060218 distance of 150Mpc. The encounters with the WDs provide a lot of fuel for IMBH growth.Comment: 15 pages, 5 figures, accepted to ApJ, minor change

    Time dependent numerical model for the emission of radiation from relativistic plasma

    Full text link
    We describe a numerical model constructed for the study of the emission of radiation from relativistic plasma under conditions characteristic, e.g., to gamma-ray bursts (GRB's) and active galactic nuclei (AGN's). The model solves self consistently the kinetic equations for e^\pm and photons, describing cyclo-synchrotron emission, direct Compton and inverse Compton scattering, pair production and annihilation, including the evolution of high energy electromagnetic cascades. The code allows calculations over a wide range of particle energies, spanning more than 15 orders of magnitude in energy and time scales. Our unique algorithm, which enables to follow the particle distributions over a wide energy range, allows to accurately derive spectra at high energies, >100 \TeV. We present the kinetic equations that are being solved, detailed description of the equations describing the various physical processes, the solution method, and several examples of numerical results. Excellent agreement with analytical results of the synchrotron-SSC model is found for parameter space regions in which this approximation is valid, and several examples are presented of calculations for parameter space regions where analytic results are not available.Comment: Minor changes; References added, discussion on observational status added. Accepted for publication in Ap.

    Rate of Convergence for Cardy’s Formula

    Get PDF
    We show that crossing probabilities in 2D critical site percolation on the triangular lattice in a piecewise analytic Jordan domain converge with power law rate in the mesh size to their limit given by the Cardy–Smirnov formula. We use this result to obtain new upper and lower bounds of e[superscript O(√log logR)] R[superscript -1/3] for the probability that the cluster at the origin in the half-plane has diameter R, improving the previously known estimate of R [superscript −1/3+o(1)].Natural Sciences and Engineering Research Council of Canada. Postdoctoral ScholarshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (Award 1122374

    The Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRB 080319B

    Full text link
    We report on observations of correlated behavior between the prompt gamma-ray and optical emission from GRB 080319B, which confirm that (i) they occurred within the same astrophysical source region and (ii) their respective radiation mechanisms were dynamically coupled. Our results, based upon a new CCF methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt gamma-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic gamma-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV gamma-rays and the optical emission observed by TORTORA (extrinsic optical/gamma-ray spectral lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, the rise and decline of prompt optical emission at ~T+10+/-1 sec and ~T+50+/-1 sec, respectively, both coincide with discontinuities in the hard to soft evolution of the photon index for a power law fit to 15-150 keV Swift-BAT data at ~T+8+/-2 sec and ~T+48+/-1 sec. These spectral energy changes also coincide with intervals whose time-resolved spectral lag values are consistent with zero, at ~T+12+/-2 sec and ~T+50+/-2 sec. These results, which are robust across heuristic permutations of Swift-BAT energy channels and varying temporal bin resolution, have also been corroborated via independent analysis of Konus-Wind data. This potential discovery may provide the first observational evidence for an implicit connection between spectral lags and GRB emission mechanisms in the context of canonical fireball phenomenology. Future work includes exploring a subset of bursts with prompt optical emission to probe the unique or ubiquitous nature of this result.Comment: 6 pages, 3 figures. Contributed to the Proceedings of the Sixth Huntsville GRB Symposium. Edited by C.A. Meegan, N. Gehrels, and C. Kouvelioto
    • 

    corecore