7 research outputs found

    Techniques for Arbuscular Mycorrhiza Inoculum Reduction

    Get PDF
    It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems. There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities. Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages. Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity. An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects. Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment

    Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study

    Get PDF
    BACKGROUND: Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity. METHODS: This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score. FINDINGS: In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0–5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm(3) or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70–16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07–5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99–1·04; p=0·35). INTERPRETATION: Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction

    Deep Learning–Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects

    No full text
    BackgroundEpicardial adipose tissue (EAT) volume (cm3) and attenuation (Hounsfield units) may predict major adverse cardiovascular events (MACE). We aimed to evaluate the prognostic value of fully automated deep learning-based EAT volume and attenuation measurements quantified from noncontrast cardiac computed tomography.MethodsOur study included 2068 asymptomatic subjects (56±9 years, 59% male) from the EISNER trial (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) with long-term follow-up after coronary artery calcium measurement. EAT volume and mean attenuation were quantified using automated deep learning software from noncontrast cardiac computed tomography. MACE was defined as myocardial infarction, late (&gt;180 days) revascularization, and cardiac death. EAT measures were compared to coronary artery calcium score and atherosclerotic cardiovascular disease risk score for MACE prediction.ResultsAt 14±3 years, 223 subjects suffered MACE. Increased EAT volume and decreased EAT attenuation were both independently associated with MACE. Atherosclerotic cardiovascular disease risk score, coronary artery calcium, and EAT volume were associated with increased risk of MACE (hazard ratio [95%CI]: 1.03 [1.01-1.04]; 1.25 [1.19-1.30]; and 1.35 [1.07-1.68], P&lt;0.01 for all) and EAT attenuation was inversely associated with MACE (hazard ratio, 0.83 [95% CI, 0.72-0.96]; P=0.01), with corresponding Harrell C statistic of 0.76. MACE risk progressively increased with EAT volume ≥113 cm3 and coronary artery calcium ≥100 AU and was highest in subjects with both (P&lt;0.02 for all). In 1317 subjects, EAT volume was correlated with inflammatory biomarkers C-reactive protein, myeloperoxidase, and adiponectin reduction; EAT attenuation was inversely related to these biomarkers.ConclusionsFully automated EAT volume and attenuation quantification by deep learning from noncontrast cardiac computed tomography can provide prognostic value for the asymptomatic patient, without additional imaging or physician interaction

    Extra-coronary calcification (aortic valve calcification, mitral annular calcification, aortic valve ring calcification and thoracic aortic calcification) in HIV seropositive and seronegative men: Multicenter AIDS Cohort Study.

    No full text
    IntroductionPrevious studies have demonstrated an association between HIV infection and coronary artery disease (CAD); little is known about potential associations between HIV infection and extra-coronary calcification (ECC).MethodsWe analyzed 621 HIV infected (HIV+) and 384 HIV uninfected (HIV-) men from the Multicenter AIDS Cohort Study who underwent non-contrast computed tomography (CT) from 2010-2013. Agatston scores were calculated for mitral annular calcification (MAC), aortic valve calcification (AVC), aortic valve ring calcification (AVRC), and thoracic aortic calcification (TAC). The associations between HIV infection and the presence of each type of ECC (score &gt; 0) were evaluated by multivariable logistic regression. We also evaluated the association of ECC with inflammatory biomarker levels and coronary plaque morphology.ResultsAmong HIV+ and HIV- men, the age-standardized prevalences were 15% for TAC (HIV+ 14%/HIV- 16%), 10% for AVC (HIV+ 11%/HIV- 8%), 24% for AVRC (HIV+ 23% HIV- 24%), and 5% for MAC (HIV+ 7%/HIV- 3%). After adjustment, HIV+ men had 3-fold greater odds of MAC compared to HIV- men (OR = 3.2, 95% CI: 1.5-6.7), and almost twice the odds of AVC (1.8, 1.1-2.9). HIV serostatus was not associated with TAC or AVRC. AVRC was associated with higher Il-6 and sCD163 levels. TAC was associated with higher ICAM-1, TNF-α RII, and Il-6 levels. AVC and AVRC calcification were associated with presence of non-calcified plaque in HIV+ but not HIV- men.ConclusionHIV infection is an independent predictor of MAC and AVC. Whether these calcifications predict mortality in HIV+ patients deserves further investigation

    Machine learning integration of circulating and imaging biomarkers for explainable patient-specific prediction of cardiac events: A prospective study

    No full text
    Background and aimsWe sought to assess the performance of a comprehensive machine learning (ML) risk score integrating circulating biomarkers and computed tomography (CT) measures for the long-term prediction of hard cardiac events in asymptomatic subjects.MethodsWe studied 1069 subjects (age 58.2&nbsp;±&nbsp;8.2 years, 54.0% males) from the prospective EISNER trial who underwent coronary artery calcium (CAC) scoring CT, serum biomarker assessment, and long-term follow-up. Epicardial adipose tissue (EAT) was quantified from CT using fully automated deep learning software. Forty-eight serum biomarkers, both established and novel, were assayed. An ML algorithm (XGBoost) was trained using clinical risk factors, CT measures (CAC score, number of coronary lesions, aortic valve calcium score, EAT volume and attenuation), and circulating biomarkers, and validated using repeated 10-fold cross validation.ResultsAt 14.5&nbsp;±&nbsp;2.0 years, there were 50 hard cardiac events (myocardial infarction or cardiac death). The ML risk score (area under the receiver operator characteristic curve [AUC] 0.81) outperformed the CAC score (0.75) and ASCVD risk score (0.74; both p&nbsp;=&nbsp;0.02) for the prediction of hard cardiac events. Serum biomarkers provided incremental prognostic value beyond clinical data and CT measures in the ML model (net reclassification index 0.53 [95% CI: 0.23-0.81], p&nbsp;&lt;&nbsp;0.0001). Among novel biomarkers, MMP-9, pentraxin 3, PIGR, and GDF-15 had highest variable importance for ML and reflect the pathways of inflammation, extracellular matrix remodeling, and fibrosis.ConclusionsIn this prospective study, ML integration of novel circulating biomarkers and noninvasive imaging measures provided superior long-term risk prediction for cardiac events compared to current risk assessment tools
    corecore