844 research outputs found
Intramolecular vibrational energy redistribution as state space diffusion: Classical-quantum correspondence
We study the intramolecular vibrational energy redistribution (IVR) dynamics
of an effective spectroscopic Hamiltonian describing the four coupled high
frequency modes of CDBrClF. The IVR dynamics ensuing from nearly isoenergetic
zeroth-order states, an edge (overtone) and an interior (combination) state, is
studied from a state space diffusion perspective. A wavelet based
time-frequency analysis reveals an inhomogeneous phase space due to the
trapping of classical trajectories. Consequently the interior state has a
smaller effective IVR dimension as compared to the edge state.Comment: 5 pages, 3 figure
Structure of a translocation signal domain mediating conjugative transfer by Type IV secretion systems
Relaxases are proteins responsible for the transfer of plasmid and chromosomal DNA from one bacterium to another during conjugation. They covalently react with a specific phosphodiester bond within DNA origin of transfer sequences, forming a nucleo-protein complex which is subsequently recruited for transport by a plasmid-encoded type IV secretion system. In previous work we identified the targeting translocation signals presented by the conjugative relaxase TraI of plasmid R1. Here we report the structure of TraI translocation signal TSA. In contrast to known translocation signals we show that TSA is an independent folding unit and thus forms a bona fide structural domain. This domain can be further divided into three sub-domains with striking structural homology with helicase sub-domains of the SF1B family. We also show that TSA is part of a larger vestigial helicase domain which has lost its helicase activity but not its single-stranded DNA binding capability. Finally, we further delineate the binding site responsible for translocation activity of TSA by targeting single residues for mutations. Overall, this study provides the first evidence that translocation signals can be part of larger structural scaffolds, overlapping with translocation-independent activities
Application of Integrated Wind Energy Conversion System (WECS) and Photovoltaic (PV) Solar Farm as STATCOM to Regulate Grid Voltage During Night Time
AbstractThis paper presents the integration of wind energy conversion system (WECS) with photovoltaic (PV) solar farm (SF) which acts as flexible ac transmission system controller-static synchronous compensator during night time, to regulate the point of common coupling voltage and to rectify faults when SF is not producing any active power. The proposed control will enable increased connections of WECS. MATLAB/Simulink based simulation results are presented for validation of the system
Exploring the influence of iron substitution in lithium rich layered oxides Li2Ru1-:XFexO3: Triggering the anionic redox reaction
Lithium rich layered materials are an interesting class of materials which exploit both anionic and cationic redox reactions to store energy upwards of 250 mA h g-1. This paper aims to understand the nature of the redox reactions taking place in these compounds. Li2RuO3 was used as the base compound, which is then compared with compounds generated by partially substituting Ru with Ti and Fe respectively. Electrochemical tests indicate that Fe substitution in the sample leads to an improvement in capacity, cycle life and reduction of potential decay. To elucidate the reason for this improvement in operando diffraction experiments were carried out, highlighting the formation of a secondary de-lithiated phase. The distortion of the pristine structure eventually induces frontier orbital reorganization leading to the oxygen redox reaction resulting in extra capacity. Local changes at Fe and Ru ions are recorded using in operando X-ray absorption spectroscopy (XAS). It was noted that while Ru undergoes a reversible redox reaction, Fe undergoes a significant irreversible change in its coordination environment during cycling. The changes in the coordination environment of oxygen and formation of O2n- type species were probed in situ using soft X-rays
Histopathological insights into cherubism: a case presentation
Cherubism is a rare hereditary fibro-osseous disorder of the jaws, typically presents as progressive, painless, bilateral jaw swelling in children between 2 to 5 years of age, with lesions showing maximum growth until puberty before regressing spontaneously. Radiographically, it is characterized by bilateral, multilocular radiolucencies in the posterior mandible and maxilla. Histopathologically, cherubism is marked by fibrotic stromal proliferation with multinucleated osteoclast-like giant cells. The presence of vascular channels and eosinophilic deposits further accentuates the unique histologic landscape of this condition. By documenting this histopathological perspective, we aim to reinforce its diagnostic significance and contribute to the growing repository of cherubism-related literature
Irreversible EGFR Inhibitor EKB-569 Targets Low-LET γ-Radiation-Triggered Rel Orchestration and Potentiates Cell Death in Squamous Cell Carcinoma
EKB-569 (Pelitinib), an irreversible EGFR tyrosine kinase inhibitor has shown potential therapeutic efficiency in solid tumors. However, cell-killing potential in combination with radiotherapy and its underlying molecular orchestration remain to be explored. The objective of this study was to determine the effect of EKB-569 on ionizing radiation (IR)-associated NFκB-dependent cell death. SCC-4 and SCC-9 cells exposed to IR (2Gy) with and without EKB-569 treatment were analyzed for transactivation of 88 NFκB pathway molecules, NFκB DNA-binding activity, translation of the NFκB downstream mediators, Birc1, 2 and 5, cell viability, metabolic activity and apoptosis. Selective targeting of IR-induced NFκB by EKB-569 and its influence on cell-fate were assessed by overexpressing (p50/p65) and silencing (ΔIκBα) NFκB. QPCR profiling after IR exposure revealed a significant induction of 74 NFκB signal transduction molecules. Of those, 72 were suppressed with EKB-569. EMSA revealed a dose dependent inhibition of NFκB by EKB-569. More importantly, EKB-569 inhibited IR-induced NFκB in a dose-dependent manner, and this inhibition was sustained up to at least 72 h. Immunoblotting revealed a significant suppression of IR-induced Birc1, 2 and 5 by EKB-569. We observed a dose-dependent inhibition of cell viability, metabolic activity and apoptosis with EKB-569. EKB-569 significantly enhanced IR-induced cell death and apoptosis. Blocking NFκB improved IR-induced cell death. Conversely, NFκB overexpression negates EKB-569 -induced cell-killing. Together, these pre-clinical data suggest that EKB-569 is a radiosensitizer of squamous cell carcinoma and may mechanistically involve selective targeting of IR-induced NFκB-dependent survival signaling. Further pre-clinical in-vivo studies are warranted
Comparison of Outcome of Management of Distal Humerus Fractures by Orthogonal Plating and Parallel Plating
In-depth mesocrystal formation analysis of microwave-assisted synthesis of LiMnPO4nanostructures in organic solution
In the present work, we report on the preparation of LiMnPO4 (lithiophilite) nanorods and mesocrystals composed of self-assembled rod subunits employing microwave-assisted precipitation with processing times on the time scale of minutes. Starting from metal salt precursors and H3PO4 as phosphate source, single-phase LiMnPO4 powders with grain sizes of approx. 35 and 65 nm with varying morphologies were obtained by tailoring the synthesis conditions using rac-1-phenylethanol as solvent. The mesocrystal formation, microstructure and phase composition were determined by electron microscopy, nitrogen physisorption, X-ray diffraction (including Rietveld refinement), dynamic light scattering, X-ray absorption and X-ray photoelectron spectroscopy, and other techniques. In addition, we investigated the formed organic matter by gas chromatography coupled with mass spectrometry in order to gain a deeper understanding of the dissolution\u2013precipitation process. Also, we demonstrate that the obtained LiMnPO4 nanocrystals can be redispersed in polar solvents such as ethanol and dimethylformamide and are suitable as building blocks for the fabrication of nanofibers via electrospinning
- …
