112 research outputs found
Plug in the Safety Chip: Enforcing Constraints for LLM-driven Robot Agents
Recent advancements in large language models (LLMs) have enabled a new
research domain, LLM agents, for solving robotics and planning tasks by
leveraging the world knowledge and general reasoning abilities of LLMs obtained
during pretraining. However, while considerable effort has been made to teach
the robot the "dos," the "don'ts" received relatively less attention. We argue
that, for any practical usage, it is as crucial to teach the robot the
"don'ts": conveying explicit instructions about prohibited actions, assessing
the robot's comprehension of these restrictions, and, most importantly,
ensuring compliance. Moreover, verifiable safe operation is essential for
deployments that satisfy worldwide standards such as ISO 61508, which defines
standards for safely deploying robots in industrial factory environments
worldwide. Aiming at deploying the LLM agents in a collaborative environment,
we propose a queryable safety constraint module based on linear temporal logic
(LTL) that simultaneously enables natural language (NL) to temporal constraints
encoding, safety violation reasoning and explaining, and unsafe action pruning.
To demonstrate the effectiveness of our system, we conducted experiments in
VirtualHome environment and on a real robot. The experimental results show that
our system strictly adheres to the safety constraints and scales well with
complex safety constraints, highlighting its potential for practical utility
Genetic and Neuroanatomical Support for Functional Brain Network Dynamics in Epilepsy
Focal epilepsy is a devastating neurological disorder that affects an
overwhelming number of patients worldwide, many of whom prove resistant to
medication. The efficacy of current innovative technologies for the treatment
of these patients has been stalled by the lack of accurate and effective
methods to fuse multimodal neuroimaging data to map anatomical targets driving
seizure dynamics. Here we propose a parsimonious model that explains how
large-scale anatomical networks and shared genetic constraints shape
inter-regional communication in focal epilepsy. In extensive ECoG recordings
acquired from a group of patients with medically refractory focal-onset
epilepsy, we find that ictal and preictal functional brain network dynamics can
be accurately predicted from features of brain anatomy and geometry, patterns
of white matter connectivity, and constraints complicit in patterns of gene
coexpression, all of which are conserved across healthy adult populations.
Moreover, we uncover evidence that markers of non-conserved architecture,
potentially driven by idiosyncratic pathology of single subjects, are most
prevalent in high frequency ictal dynamics and low frequency preictal dynamics.
Finally, we find that ictal dynamics are better predicted by white matter
features and more poorly predicted by geometry and genetic constraints than
preictal dynamics, suggesting that the functional brain network dynamics
manifest in seizures rely on - and may directly propagate along - underlying
white matter structure that is largely conserved across humans. Broadly, our
work offers insights into the generic architectural principles of the human
brain that impact seizure dynamics, and could be extended to further our
understanding, models, and predictions of subject-level pathology and response
to intervention
Involvement of metabotropic glutamate receptor 5, AKT/PI3K Signaling and NF-kappaB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes
Abstract
Methamphetamine (MA) is one of the commonly used illicit drugs and the central nervous system toxicity of MA is well documented. The mechanisms contributing to this toxicity have not been fully elucidated. In this study, we investigated the effect of MA on the expression levels of the proinflammatory cytokines/chemokines, IL-6 and IL-8 in an astrocytic cell line. The IL-6 and IL-8 RNA levels were found to increase by 4.6 ± 0.2 fold and 3.5 ± 0.2 fold, respectively, after exposure to MA for three days. Exposure of astrocytes to MA for 24 hours also caused increased expression of IL-6 and IL-8 at the level of both RNA and protein. The potential involvement of the nuclear factor-Kappa B (NF-κB) pathway was explored as one of the possible mechanism(s) responsible for the increased induction of IL-6 and IL-8 by MA. The MA-mediated increases in IL-6 and IL-8 were significantly abrogated by SC514. We also found that exposure of astrocytes to MA results in activation of NF-κB through the phosphorylation of IκB-α, followed by translocation of active NF-κB from the cytoplasm to the nucleus. In addition, treatment of cells with a specific inhibitor of metabotropic glutamate receptor-5 (mGluR5) revealed that MA-mediated expression levels of IL-6 and IL-8 were abrogated by this treatment by 42.6 ± 5.8% and 65.5 ± 3.5%, respectively. Also, LY294002, an inhibitor of the Akt/PI3K pathway, abrogated the MA-mediated induction of IL-6 and IL-8 by 77.9 ± 6.6% and 81.4 ± 2.6%, respectively. Thus, our study demonstrates the involvement of an NF-κB-mediated signaling mechanism in the induction of IL-6 and IL-8 by MA. Furthermore, we showed that blockade of mGluR5 can protect astrocytes from MA-mediated increases of proinflammatory cytokines/chemokines suggesting mGluR5 as a potential therapeutic target in treating MA-mediated neurotoxicity.Peer Reviewe
Methamphetamine Increases LPS-Mediated Expression of IL-8, TNF-α and IL-1β in Human Macrophages through Common Signaling Pathways
The use of methamphetamine (MA) has increased in recent years, and is a major health concern throughout the world. The use of MA has been associated with an increased risk of acquiring HIV-1, along with an increased probability of the acquisition of various sexually transmitted infections. In order to determine the potential effects of MA exposure in the context of an infectious agent, U937 macrophages were exposed to various combinations of MA and bacterial lipopolysaccharide (LPS). Treatment with MA alone caused significant increases in the levels of TNF-α, while treatment with both MA and LPS resulted in significant increases in TNF-α, IL-1β and the chemokine IL-8. The increases in cytokine or chemokine levels seen when cells were treated with both LPS and MA were generally greater than those increases observed when cells were treated with only LPS. Treatment with chemical inhibitors demonstrated that the signal transduction pathways including NF-kB, MAPK, and PI3-Akt were involved in mediating the increased inflammatory response. As discussed in the paper, these pathways appear to be utilized by both MA and LPS, in the induction of these inflammatory mediators. Since these pathways are involved in the induction of inflammation in response to other pathogens, this suggests that MA-exacerbated inflammation may be a common feature of infectious disease in MA abusers
HIV-1 gp120 Induces Expression of IL-6 through a Nuclear Factor-Kappa B-Dependent Mechanism: Suppression by gp120 Specific Small Interfering RNA
In addition to its role in virus entry, HIV-1 gp120 has also been implicated in HIV-associated neurocognitive disorders. However, the mechanism(s) responsible for gp120-mediated neuroinflammation remain undefined. In view of increased levels of IL-6 in HIV-positive individuals with neurological manifestations, we sought to address whether gp120 is involved in IL-6 over-expression in astrocytes. Transfection of a human astrocyte cell line with a plasmid encoding gp120 resulted in increased expression of IL-6 at the levels of mRNA and protein by 51.3±2.1 and 11.6±2.2 fold respectively; this effect of gp120 on IL-6 expression was also demonstrated using primary human fetal astrocytes. A similar effect on IL-6 expression was observed when primary astrocytes were treated with gp120 protein derived from different strains of X4 and R5 tropic HIV-1. The induction of IL-6 could be abrogated by use of gp120-specific siRNA. Furthermore, this study showed that the NF-κB pathway is involved in gp120-mediated IL-6 over-expression, as IKK-2 and IKKβ inhibitors inhibited IL-6 expression by 56.5% and 60.8%, respectively. These results were also confirmed through the use of NF-κB specific siRNA. We also showed that gp120 could increase the phosphorylation of IκBα. Furthermore, gp120 transfection in the SVGA cells increased translocation of NF-κB from cytoplasm to nucleus. These results demonstrate that HIV-1 gp120-mediated over-expression of IL-6 in astrocytes is one mechanism responsible for neuroinflammation in HIV-infected individuals and this is mediated by the NF-κB pathway
Allogeneic Hematopoietic Cell Transplantation for Blastic Plasmacytoid Dendritic Cell Neoplasm: A CIBMTR Analysis
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy with a poor prognosis and considered incurable with conventional chemotherapy. Small observational studies reported allogeneic hematopoietic cell transplantation (allo-HCT) offers durable remissions in patients with BPDCN. We report an analysis of patients with BPDCN who received an allo-HCT, using data reported to the Center for International Blood and Marrow Transplant Research (CIBMTR). We identified 164 patients with BPDCN from 78 centers who underwent allo-HCT between 2007 and 2018. The 5-year overall survival (OS), disease-free survival (DFS), relapse, and nonrelapse mortality (NRM) rates were 51.2% (95% confidence interval [CI], 42.5-59.8), 44.4% (95% CI, 36.2-52.8), 32.2% (95% CI, 24.7-40.3), and 23.3% (95% CI, 16.9-30.4), respectively. Disease relapse was the most common cause of death. On multivariate analyses, age of ≥60 years was predictive for inferior OS (hazard ratio [HR], 2.16; 95% CI, 1.35-3.46; P = .001), and higher NRM (HR, 2.19; 95% CI, 1.13-4.22; P = .02). Remission status at time of allo-HCT (CR2/primary induction failure/relapse vs CR1) was predictive of inferior OS (HR, 1.87; 95% CI, 1.14-3.06; P = .01) and DFS (HR, 1.75; 95% CI, 1.11-2.76; P = .02). Use of myeloablative conditioning with total body irradiation (MAC-TBI) was predictive of improved DFS and reduced relapse risk. Allo-HCT is effective in providing durable remissions and long-term survival in BPDCN. Younger age and allo-HCT in CR1 predicted for improved survival, whereas MAC-TBI predicted for less relapse and improved DFS. Novel strategies incorporating allo-HCT are needed to further improve outcomes
- …