8,989 research outputs found
The Time Series Consumption Function Revisited
macroeconomics, consumption, life-cycle hypothesis, consumer spending, income
Can filamentary accretion explain the orbital poles of the Milky Way satellites?
Several scenarios have been suggested to explain the phase-space distribution
of the Milky Way (MW) satellite galaxies in a disc of satellites (DoS). To
quantitatively compare these different possibilities, a new method analysing
angular momentum directions in modelled data is presented. It determines how
likely it is to find sets of angular momenta as concentrated and as close to a
polar orientation as is observed for the MW satellite orbital poles. The method
can be easily applied to orbital pole data from different models. The observed
distribution of satellite orbital poles is compared to published angular
momentum directions of subhalos derived from six cosmological state-of-the-art
simulations in the Aquarius project. This tests the possibility that
filamentary accretion might be able to naturally explain the satellite orbits
within the DoS. For the most likely alignment of main halo and MW disc spin,
the probability to reproduce the MW satellite orbital pole properties turns out
to be less than 0.5 per cent in Aquarius models. Even an isotropic distribution
of angular momenta has a higher likelihood to produce the observed
distribution. The two Via Lactea cosmological simulations give results similar
to the Aquarius simulations. Comparing instead with numerical models of
galaxy-interactions gives a probability of up to 90 per cent for some models to
draw the observed distribution of orbital poles from the angular momenta of
tidal debris. This indicates that the formation as tidal dwarf galaxies in a
single encounter is a viable, if not the only, process to explain the
phase-space distribution of the MW satellite galaxies.Comment: 14 pages, 4 figures, 3 tables. Accepted for publication in MNRA
A statistical approach to identify superluminous supernovae and probe their diversity
We investigate the identification of hydrogen-poor superluminous supernovae
(SLSNe I) using a photometric analysis, without including an arbitrary
magnitude threshold. We assemble a homogeneous sample of previously classified
SLSNe I from the literature, and fit their light curves using Gaussian
processes. From the fits, we identify four photometric parameters that have a
high statistical significance when correlated, and combine them in a parameter
space that conveys information on their luminosity and color evolution. This
parameter space presents a new definition for SLSNe I, which can be used to
analyse existing and future transient datasets. We find that 90% of previously
classified SLSNe I meet our new definition. We also examine the evidence for
two subclasses of SLSNe I, combining their photometric evolution with
spectroscopic information, namely the photospheric velocity and its gradient. A
cluster analysis reveals the presence of two distinct groups. `Fast' SLSNe show
fast light curves and color evolution, large velocities, and a large velocity
gradient. `Slow' SLSNe show slow light curve and color evolution, small
expansion velocities, and an almost non-existent velocity gradient. Finally, we
discuss the impact of our analyses in the understanding of the powering engine
of SLSNe, and their implementation as cosmological probes in current and future
surveys.Comment: 16 pages, 9 figures, accepted by ApJ on 23/01/201
- …
