7 research outputs found

    Bioreactors as engineering support to treat cardiac muscle and vascular disease

    Get PDF
    Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements

    Decellularized vascular grafts

    No full text
    Cardiovascular disease is one of the main causes of mortality and morbidity worldwide. The “gold standard” for the replacement/repair of diseased blood vessels is substitution with autologous vessels. However, multiple surgical procedures limit the availability of autologous vessels, whereas synthetic grafts have been reported to demonstrate poor patency rates, especially for small-caliber vascular reconstructions. Decellularization of native vascular or non-vascular tissues for vascular scaffold development has gained significant attention in the past 20 years. A variety of decellularization techniques have been described and employed to achieve effective immunogenic agent removal from the developed vascular scaffold. At the same time, the decellularization must not impair the extracellular matrix (ECM) composition, structure, and mechanical properties of the graft in order to ensure long-term functionality in vivo. The aim of this chapter was to review the various decellularization treatments that have been reported in the literature for the development of decellularized vascular scaffolds
    corecore