388 research outputs found
Sismicità all’Etna dal 1989 al 2010: evidenze sull’evoluzione spazio-temporale dell’attività sismica
Il Monte Etna, uno dei più attivi vulcani basaltici tra i più monitorati al mondo, è sede di una notevole attività sismica e vulcanica. Esso è ubicato in Sicilia orientale in un complesso quadro geodinamico, dove le principali strutture tettoniche regionali giocano un ruolo chiave nei processi dinamici del vulcano. La sismicità dell’Etna si manifesta con un elevato rate di terremoti di bassa e moderata energia che, a volte, a causa dell’estrema superficialità della sorgente, provocano danni ai centri abitati prossimi all’area epicentrale. Il monitoraggio sistematico dell’attività sismica etnea è effettuato sin dal 1989, mediante una rete sismica locale permanente che nel tempo è stata oggetto di importanti miglioramenti. La prima configurazione di rete era costituita da circa 10 stazioni analogiche con sensori a corto periodo gestita dall’Istituto Internazionale di Vulcanologia (IIV-CNR). Nel 1994, una rete sismica costituita da circa 40 stazioni (analogiche con sensori a corto periodo) fu installata sull’Etna nell’ambito del Progetto Poseidon. Nel 2001, le reti gestite dall’IIV-CNR e dal Progetto Poseidon confluirono nell’Istituto Nazionale di Geofisica e Vulcanologia (INGV); attualmente la rete sismica, costituita da circa 50 stazioni digitali equipaggiate con sismometri broadband a tre componenti, è gestita dalla Sezione di Catania dell’INGV.
Nel periodo 1989-1999, il catalogo dei terremoti risulta costituito da circa 2000 eventi con soglia di completezza per magnitudo pari a 2.0; dal 1999 ad oggi contiene circa 6000 terremoti con soglia di completezza per magnitudo 1.5. La capacità di detezione della rete è migliorata nel tempo permettendo di registrare e localizzare anche gli eventi meno energetici (M≥1.0).
In questo lavoro, vengono presentati i caratteri predominanti della sismicità etnea negli ultimi 20 anni, con un maggiore dettaglio della distribuzione spazio-temporale della sismicità verificatasi dal 1999. L’analisi della attività sismica rappresenta un utile strumento per l’interpretazione delle dinamiche che hanno contraddistinto numerose ed importanti eruzioni (2001, 2002-03, 2004, 2006, 2008-09). In particolare, la variazione del rilascio energetico della sismicità ha contribuito in maniera significativa ad identificare i probabili processi geodinamici legati alla ricarica del sistema magmatico del vulcano.
La distribuzione spaziale della sismicità ha consentito di evidenziare inoltre l’esistenza di diverse aree sismogenetiche caratterizzate da un differente rate sismico, profondità focali e cinematica delle strutture associate. Infine, osservando le caratteristiche della sismicità nel lungo periodo, differenti settori del vulcano sono risultati maggiormente attivi in relazione ai più importanti recenti eventi eruttivi
Structural features of the Pernicana Fault (M. Etna, Sicily, Italy) inferred by high precise location of the microseismicity
The north-eastern flank of Mt. Etna is crossed by an important and active tectonic structure, the Pernicana Fault
having a mean strike WNW–ESE. It links westward to the active NE Rift and seems to have an important
role in controlling instability processes affecting the eastern flank of the volcano. Recent studies suggest that
Pernicana Fault is very active through sinistral, oblique-slip movements and is also characterised by frequent
shallow seismicity (depth < 2 km bsl) on the uphill western segment and by remarkable creeping on the downhill
eastern one. The Pernicana Fault earthquakes, which can reach magnitudes up to 4.2, sometimes with coseismic
surface faulting, caused severe damages to tourist resorts and villages along or close this structure. In the last
years, a strong increase of seismicity, also characterized by swarms, was recorded by INGV-CT permanent local
seismic network close the Pernicana Fault. A three-step procedure was applied to calculate precise hypocentre
locations. In a first step, we chose to apply cross-correlation analysis, in order to easily evaluate the similarity
of waveforms useful to identify earthquakes families. In a second step, we calculate probabilistic earthquake
locations using the software package NONLINLOC, which includes systematic, complete grid search and global,
non-linear search methods. Subsequently, we perform relative relocation of correlated event pairs using the
double-difference earthquake algorithm and the program HypoDD. The double-difference algorithm minimizes
the residuals between observed and calculated travel time difference for pairs of earthquakes at common stations
by iteratively adjusting the vector difference between the hypocenters.
We show the recognized spatial seismic clusters identifying the most active and hazarding sectors of the structure,
their geometry and depth.
Finally, in order to clarify the geodynamic framework of the area, we associate these results with calculated focal
mechanisms for the most energetic earthquakes
Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000
The Southeast Crater of Mount Etna (Italy) was characterized by a violent eruptive
activity between 26 January and 24 June 2000. This activity produced 64 lava fountain
episodes with repose periods from 3 hours to 10 days. We estimated a volume of about
15–20 106 m3 lava and at least 2–3 106 m3 of tephra. We compared the
paroxysmal volcanic activity to its associated seismic signature: The high number of
events highlighted a strict correlation between tremor and volcanic activity. Seismic and
volcanic characteristics, such as the frequency of occurrence, the duration of lava
fountains and the associated tremor energy, suggested the subdivision of the studied
period into two stages separated by the 20 February event. Combining volcanic with
seismic data, we observed some useful relationships among lava fountain height,
sustained column height and Reduced Displacement; in addition, we found that the entire
episode was well correlated with the duration of the amplitude increase. Computing the
tremor energy linked to each event, the total energy associated with lava fountains
episodes results in 76% of the energy released during the whole period. Finally, the
different ratios among the overall spectral amplitude of the seismic signals of the stations
located at different altitudes suggested to us the elaboration of a simple qualitative model
to explain the dynamic behavior of the tremor source during the whole episode
Relationship between surface temperatures and seismic activity at Vulcano, Aeolian Island (Italy)
Time-series acquired during last years by surface monitoring parameters are compared, and the results are discussed, following a theoretical approach. Surface parameters are fluid temperature, soil temperatures and seismic activity at La Fossa of Vulcano. Discussed periods are 1998 and from 2004 to 2007, when time relationship between changes of the heat flow from the ground and seismic activity, resulted worth noting. Earthquakes originating in the area of Vulcano are associated with both fracturing and degassing mechanisms. The formers are related to the activity of tectonic structures; while the latter are connected to fluid dynamics within the interior of the volcanic apparatus. In November 1998 seismic activity at La Fossa sharply increased: Five events were registered, with seismic signals of typical faulting earthquakes, triggered by mechanism of shear fracturing and focal depths ranging 1-4 km. Fumaroles temperatures, recorded by continuous monitoring system of INGV - Palermo, showed a growing trend since October to November 1998, highlighting a big increase of heat transfer during the period, and also the soil temperature, out of the fumaroles field showed a marked increase. Fumaroles temperatures heralded the increase of heat and energy flow during a pre-seismic period of about 1 month. The transient variation of surface release reflect an excited state of the system and may have many different causes, not directly related to the magma. Indeed, stress drops generated by small fracturing earthquakes, introduce a significant perturbation in the system resulting in a relevant production of mass and energy flow. Until these flows counteract every stress gradient, they support stationary state of the system. The observed time relationships only allow a qualitative discussion about cause and effects, but doesn’t allow any quantitative evaluation. Pressure transients generate anomalies (flows of matter, differential in heat flows, chemical reaction rates) whose time frame is specific, depending on many possible processes and path-ways. Fluid phases, along fumarolic conduits, reach the surface faster than the co-genetic earthquake, as the earthquake is embedded in a strain transient that broadly exceeds the time-space frame of the seismic transient (Lomnitz, 1994). On the other hand, in a volcano-tectonic context, different energy flows can either be a cause, either an effect of perturbation, depending on depth of their primary source. Thus, in some instances the strain transient related to local earthquakes produces anomalous chemical flows, while, in other instances the local seismic activity may be produced by chemical flows from the magmatic source. Following a period of lower energy release, other 3 anomalous periods were observed from November 2004, either in the seismic release and in the surface heat flow, even out from fumaroles. So far, the monitored sites resulted very sensitive to minor perturbations of the system. The comparative analysis of different time-series supplies information related to perturbations of the state variables, useful to verify conceptual framework and to better define “classical” and “new” monitoring techniques for volcanic, as well as seismic surveillance
Volcanic tremor at Mt. Etna, Italy, preceding and accompanying the eruption of July-August, 2001
The July 17 – August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied
by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent
seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic
signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of
eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the
frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes
of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The
frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e.,
the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central
conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike
from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the
distribution of the amplitude decay at our stations can be interpreted as the overall result of sources
located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed
some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical
studies which tackle the problem of magma replenishment for the July–August, 2001 flank eruption. We
conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different
sources which act within the volcano edifice, but also of the diverse styles of eruptive activity
Caratterizzazione sismica del sistema strutturale Pernicana - Provenzana (settore NE dell'Etna) attraverso l'utilizzo di differenti tecniche di rilocalizzazione.
Il fianco nord-orientale dell’Etna è interessato da un noto sistema strutturale denominato Pernicana-Provenzana, che ha un andamento WNW–ESE. Esso è collegato ad ovest ad un altro importante elemento strutturale, il Rift di Nord-Est, che mostra avere un ruolo importante nel controllo dei fenomeni di instabilità del fianco orientale del vulcano. La sismicità associata a questo sistema strutturale è di tipo superficiale (max 2-3 km b.s.l.) e rilevanti fenomeni di creeping sono rilevabili sul suo segmento orientale. I terremoti associati a questo sistema di faglie, che possono raggiungere magnitudo sino a 4.3, qualche volta con fenomeni di fagliazione superficiale, hanno provocato danni importanti alle principali strutture alberghiere ed ai paesi ubicati in prossimità della struttura.
Nel presente lavoro, sono riportati i risultati di uno studio di dettaglio della sismicità localizzata lungo tale sistema strutturale, nel periodo 1999-2009. I terremoti registrati dalla rete sismica permanente dell’Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania, localizzati con un modello 1D utilizzando l’algoritmo Hypoellipse (Gruppo Analisi Dati Sismici, 2010), sono stati rilocalizzati applicando due differenti tecniche di localizzazione: NonLinLoc sviluppato da Lomax et al. (2000) e HypoDD proposto da Waldhauser & Ellsworth (2000). La prima metodologia è basata su un processo di ricerca globale, nello spazio 3D, dei parametri di localizzazione che possono essere ottenuti utilizzando diversi algoritmi. Il metodo HypoDD, che non prevede l’utilizzo di un modello 3D, è invece basato sull’algoritmo della doppia differenza che minimizza i residui tra le differenze dei traveltime osservati e calcolati per coppie di terremoti a stazioni comuni. L’applicazione di tali tecniche ha permesso di ottenere localizzazioni ipocentrali di migliore qualità, fondamentali per la caratterizzazione sismica della struttura.
L’applicazione di queste differenti metodologie ha permesso di evidenziare che il sistema strutturale Pernicana- Provenzana risulta composto da segmenti caratterizzati da differenti rilasci di energia sismica. Sono stati individuati due cluster principali di terremoti, la cui distribuzione spaziale ha evidenziato un differente verso nell’immersione dei piani di faglia collegabili a questa sismicità. Infine, l’applicazione di tecniche di cross-correlazione delle forme d’onda registrate nel periodo indagato ha consentito di individuare “famiglie” di terremoti.
L’analisi spazio – temporale delle famiglie individuate ha evidenziato per alcune di esse, una ricorrenza temporale ed ha permesso di ipotizzare che l’applicazione di un campo di stress sul sistema Pernicana-Provenzana potrebbe essere capace di attivare le stesse sorgenti sismiche in differenti periodi
Surface and deep strain at Mt. Etna volcano (Sicily, Italy) during the 2003-2004 inflation phase
We carried out a study of the seismicity and ground deformation occurred on Mount Etna volcano after the end
of 2002-2003 eruption and before the onset of 2004-2005 eruption, and recorded by the permanent local seismic
network run by Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania and by the geodetic surveys
carried out in July 2003 and July 2004 on the GPS network. We provided a description of seismicity rate and
main seismic swarms which occurred during the investigated period. Mostly of the earthquakes are clustered in
two main clusters located on the north-eastern (E-W aligned and above the sea level) and south-eastern (NW-SE
aligned and from 3 to 8 Km below the sea level) sectors of the volcano. in order to better understand the kinematic
processes of the volcano, the 3D relocation were used to compute fault plane solutions and a selected dataset was
inverted to determine stress and strain tensors. The focal solutions on the north-eastern sector show clear left-lateral
kinematics along an E-W fault plane, in good agreement with the Pernicana fault kinematics. The focal solutions
on the south-eastern sector show a main right-lateral kinematics along a NW-SE fault plane evidencing a roughly
E-W oriented compression coupled with a N-S extension.
Surface ground deformation affecting Mt Etna and measured by GPS surveys highlights a marked inflation during
the same period, mainly visible on the western and upper sectors of the volcano; on the contrary, its eastern
side shows an exceptionally strong seawards and downwards motion with displacements ranging from 5 up to
10 cm along the coastline. The 2D geodetic strain tensor distribution was calculated on a 1.5 km spaced grid,
in order to detail the strain axes orientation above the entire GPS network. The results of the 2D geodetic strain
calculation evidenced the very strong extension (mainly along an- ENE-WSW axis) of the summit area that was
already considered as the cause of the 2004-2005 eruption; this main ENE-WSW extension continues throughout
the eastern flank, but here coupled with a WNW-ESE contraction, meaning a right-lateral shear along a NW-SE
oriented fault plane.
The opposite deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation
has to be interpreted by considering the different depths of the two signals. Seismic activity along the NW-SE
alignment is, in fact, located between 3 and 8 km b.s.l. and it is then affected by the very strong additional EW
compression induced by the inflating source located by inverting GPS data just westwards and at the same
depth. Ground deformation measured by GPS at the surface, on the contrary, is mainly affected by the shallower
dynamics of the eastern flank, fastly moving towards East that produces an opposite (extension) E-W strain. It
is also meaningful, confirming the decoupling between the surface and deep strain, that all the seismicity of the
south-eastern sector lies beneath the sliding plane already modeled by geodetic data for the same time interval and
for the 2004-2006 period and also beneath the deeper one previously modeled during the 1993-1998 period when
the eastern flank velocity was much slower
Instrumental seismic catalogue of Mt. Etna earthquakes (Sicily, Italy): ten years (2000-2010) of instrumental recordings
Instrumental seismic catalogues are an essential tool for the zonation of
the territory and the production of seismic hazard maps. They are also a
valuable instrument for detailed seismological studies regarding active
volcanoes and, above all, for interpreting the magma dynamics and the
evolution of eruptive phenomena. In this paper, we show the first instrumental
earthquake catalogue of Mt. Etna, for the period 2000-2010, with
the purpose of producing a homogeneous dataset of 10 years of seismological
observations. During this period, 16,845 earthquakes have been
recorded by the seismic network run by the Istituto Nazionale di Geofisica
and Vulcanologia, Osservatorio Etneo, in Catania. A total of 6,330 events,
corresponding to approximately 40% of all earthquakes recorded, were located
by using a one-dimensional VP velocity model. The magnitude completeness
of the catalogue is equal to about 1.5 for the whole period, except
for some short periods in 2001 and 2002-2003 and at the end of 2009. The
reliability of the data collected is supported by the good values of the main
hypocentral parameters through the time. The spatial distribution of seismicity
allowed the highlighting of several seismogenetic areas characterized
by different seismic rates and focal depths. This seismic catalogue
represents a fundamental tool for several research aiming to a better understanding
of the behavior of an active volcano such as Mt. Etna
La sequenza sismica nel versante nord-occidentale dell'Etna del 19-27 Dicembre 2009 : evidenze di ricarica magmatica profonda?
E’ stata analizzata la sequenza sismica che ha interessato il versante nord-occidentale dell’Etna nel periodo 19-27 dicembre 2009 (Fig. 1). Essa è stata caratterizzata da oltre 400 scosse di magnitudo compresa tra 1.0 e 4.8, localizzate ad una profondità tra 20 e 30 km, con un rilevante rilascio energetico, come si osserva dalla distribuzione temporale del numero delle scosse e dell’energia ad esse associata nel tempo (Fig. 2). È interessante notare come l’energia rilasciata durante la sequenza risulti essere quasi il triplo dell’energia del periodo sineruttivo 2008, pur essendo pressoché uguale il numero di scosse registrate.
In questo settore dell’area etnea, caratterizzato da sismicità profonda, poco frequente e di modesta energia, la modalità di rilascio sismico della sequenza in oggetto costituisce un elemento di novità. Infatti, più del 50% delle scosse si sono verificate nel corso delle prime 24 ore, come tipicamente osservato nel corso di sciami vulcanici sineruttivi.
E’ importante evidenziare che nell’area etnea eventi sismici con profondità focali comprese tra i 10 e i 30 km vengono considerati dei veri e propri “markers” di attività vulcanica (e.g. Puglisi et al., 2001), in quanto si verificano abbastanza regolarmente durante i periodi intra-eruttivi e possono essere messi in relazione con i meccanismi di ricarica magmatica (e.g. Bonaccorso, 2001). Essi sono principalmente localizzati nei settori occidentale e meridionale del vulcano lungo strutture orientate NO-SE e NNO-SSE e, occasionalmente, lungo strutture orientate NE-SO (Patanè et al., 2004). Pertanto è ragionevole ipotizzare che il fenomeno oggetto del presente studio possa essere ricondotto ad una fase di ricarica profonda del sistema magmatico etneo
Quantifying probabilities of eruption at a well-monitored active volcano: an application to Mount Etna (Sicily, Italy).
At active volcanoes, distinct eruptions are preceded by complex and different precursory patterns; in addition, there are precursory signals which do not necessarily lead to an eruption. The main purpose of this paper is to present an unprecedented application of the recently developed code named BET_EF (Bayesian Event Tree_Eruption Forecasting) to the quantitative estimate of the eruptive hazard at Mt. Etna volcano.
We tested the model for the case history of the July-August 2001 flank eruption. Anomalies in geophysical, geochemical and volcanological monitoring parameters were observed more than a month in advance of the effective onset of the eruption. As a consequence, eruption probabilities larger than 90% were estimated. An important feature of the application of BET_EF to Mt. Etna was the probabilistic estimate of opening vent locations. The methodology allowed a clear identification of assumptions and monitoring parameter thresholds and provided rational means for their revision if new data or information are incoming
- …
