11 research outputs found

    EEG Signal Analysis for Effective Classification of Brain States

    Get PDF
    EEG (Electroencephalogram) is a non-stationary signal that has been well established to be used for studying various states of the brain, in general, and several disorders, in particular. This work presents efficient signal processing and classification of the EEG signal. The digital filters used during decomposition of the input EEG signal have transfer functions which are simple and easily realizable on digital signal processors (DSP) and embedded systems. The features selected in this study; energy, entropy and variance; are among the most efficient and informative to analyze the EEG signal strength and distribution for detecting brain disorders such as seizure. Training and testing of the extracted features are performed using linear kernel (Support Vector Machine) SVM and thresholding in DSP algorithms and hardware, respectively. The experimental results for the digital signal processing algorithms show a high classification accuracy of 95% in the occurrence of seizure in epileptic patients. The techniques in this work are also under investigation for classifying other brain states/disorders such as sleep stages, sleep apnea and multiple sclerosis

    Protective Effect of Vitamin D against Hepatic Molecular Apoptosis Caused by a High-Fat Diet in Rats

    No full text
    The protective effects of vitamin D (VitD) in different diseases were studied. The liver is of great interest, especially with the presence of VitD receptors. A high-fat diet (HFD) is associated with many diseases, including liver injury. Consumption of saturated fatty acids triggers hepatic apoptosis and is associated with increased inflammation. We aimed in this study to investigate the protective effects of VitD on hepatic molecular apoptotic changes in response to an HFD in rats. Forty male Wistar albino rats were used and divided into four groups: control, HFD, control + VitD, and VitD-supplemented HFD (HFD + VitD) groups. After six months, the rats were sacrificed, and the livers were removed. RNA was extracted from liver tissues and used for the quantitative real-time RT-PCR of different genes: B-cell lymphoma/leukemia-2 (BCL2), BCL-2-associated X protein (Bax), Fas cell surface death receptor (FAS), FAS ligand (FASL), and tumor necrosis factor α (TNF-α). The results showed that an HFD increased the expression of the pro-apoptotic genes Bax, FAS, and FASL, and reduced the expression of the anti-apoptotic gene BCL2. Interestingly, a VitD-supplemented HFD significantly increased the BCL2 expression and decreased the expression of all pro-apoptotic genes and TNFα. In conclusion, VitD has a protective role against hepatic molecular apoptotic changes in response to an HFD
    corecore