754 research outputs found

    High intermodulation gain in a micromechanical Duffing resonator

    Full text link
    In this work we use a micromechanical resonator to experimentally study small signal amplification near the onset of Duffing bistability. The device consists of a PdAu beam serving as a micromechanical resonator excited by an adjacent gate electrode. A large pump signal drives the resonator near the onset of bistability, enabling amplification of small signals in a narrow bandwidth. To first order, the amplification is inversely proportional to the frequency difference between the pump and signal. We estimate the gain to be about 15dB for our device

    Coexistence of a triplet nodal order-parameter and a singlet order-parameter at the interfaces of ferromagnet-superconductor Co/CoO/In junctions

    Full text link
    We present differential conductance measurements of Cobalt / Cobalt-Oxide / Indium planar junctions, 500nm x 500nm in size. The junctions span a wide range of barriers, from very low to a tunnel barrier. The characteristic conductance of all the junctions show a V-shape structure at low bias instead of the U-shape characteristic of a s-wave order parameter. The bias of the conductance peaks is, for all junctions, larger than the gap of indium. Both properties exclude pure s-wave pairing. The data is well fitted by a model that assumes the coexistence of s-wave singlet and equal spin p-wave triplet fluids. We find that the values of the s-wave and p-wave gaps follow the BCS temperature dependance and that the amplitude of the s-wave fluid increases with the barrier strength.Comment: 5 pages, Accepted to Phys. Rev.

    Nonlinear resonance in a three-terminal carbon nanotube resonator

    Full text link
    The RF-response of a three-terminal carbon nanotube resonator coupled to RF-transmission lines is studied by means of perturbation theory and direct numerical integration. We find three distinct oscillatory regimes, including one regime capable of exhibiting very large hysteresis loops in the frequency response. Considering a purely capacitive transduction, we derive a set of algebraic equations which can be used to find the output power (S-parameters) for a device connected to transmission lines with characteristic impedance Z0Z_0.Comment: 16 pages, 8 figure

    870 micron observations of nearby 3CRR radio galaxies

    Full text link
    We present submillimeter continuum observations at 870 microns of the cores of low redshift 3CRR radio galaxies, observed at the Heinrich Hertz Submillimeter Telescope. The cores are nearly flat spectrum between the radio and submillimeter which implies that the submillimeter continuum is likely to be synchrotron emission and not thermal emission from dust. The emitted power from nuclei detected at optical wavelengths and in the X-rays is similar in the submillimeter, optical and X-rays. The submillimeter to optical and X-ray power ratios suggest that most of these sources resemble misdirected BL Lac type objects with synchrotron emission peaking at low energies. However we find three exceptions, the FR I galaxy 3C264 and the FR II galaxies 3C390.3 and 3C338 with high X-ray to submillimeter luminosity ratios. These three objects are candidate high or intermediate energy peaked BL Lac type objects. With additional infrared observations and from archival data, we compile spectral energy distributions (SEDs) for a subset of these objects. The steep dips observed near the optical wavelengths in many of these objects suggest that extinction inhibits the detection and reduces the flux of optical continuum core counterparts. High resolution near or mid-infrared imaging may provide better measurements of the underlying synchrotron emission peak.Comment: accepted for publication in A

    A class of well-posed parabolic final value problems

    Full text link
    This paper focuses on parabolic final value problems, and well-posedness is proved for a large class of these. The clarification is obtained from Hilbert spaces that characterise data that give existence, uniqueness and stability of the solutions. The data space is the graph normed domain of an unbounded operator that maps final states to the corresponding initial states. It induces a new compatibility condition, depending crucially on the fact that analytic semigroups always are invertible in the class of closed operators. Lax--Milgram operators in vector distribution spaces constitute the main framework. The final value heat conduction problem on a smooth open set is also proved to be well posed, and non-zero Dirichlet data are shown to require an extended compatibility condition obtained by adding an improper Bochner integral.Comment: 16 pages. To appear in "Applied and numerical harmonic analysis"; a reference update. Conference contribution, based on arXiv:1707.02136, with some further development

    Helium Emission in the Type Ic SN 1999cq

    Get PDF
    We present the first unambiguous detection of helium emission lines in spectra of Type Ic supernovae (SNe Ic). The presence of He I lines, with full width at half maximum ~ 2000 km/s, and the distinct absence of any other intermediate-width emission (e.g., Halpha), implies that the ejecta of SN Ic 1999cq are interacting with dense circumstellar material composed of almost pure helium. This strengthens the argument that the progenitors of SNe Ic are core-collapse events in stars that have lost both their hydrogen and helium envelopes, either through a dense wind or mass-transfer to a companion. In this way, SN 1999cq is similar to supernovae such as SN 1987K and SN 1993J that helped firmly establish a physical connection between Type Ib and Type II supernovae. The light curve of SN 1999cq is very fast, with an extremely rapid rise followed by a quick decline. SN 1999cq is also found to exhibit a high level of emission at blue wavelengths (< 5500 A), likely resulting from either an unusually large amount of iron and iron-group element emission or uncharacteristically low reddening compared with other SNe Ic.Comment: 17 pages (AASTeX V5.0), 4 figures, accepted for publication in the Astronomical Journa

    Dust Formation and He II 4686 emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc

    Full text link
    We present evidence for the formation of dust grains in an unusual Type Ib SN based on late-time spectra of SN 2006jc. The progenitor suffered an LBV-like outburst just 2 yr earlier, and we propose that the dust formation is a consequence of the SN blast wave overtaking that LBV-like shell. The key evidence for dust formation is (a) the appearance of a red/near-IR continuum source fit by 1600 K graphite grains, and (b) fading of the redshifted sides of He I emission lines, yielding progressively more asymmetric blueshifted lines as dust obscures receding material. This provides the strongest case yet for dust formation in any SN Ib/c. Both developments occurred between 51 and 75 d after peak, while other SNe observed to form dust did so after a few hundred days. Geometric considerations indicate that dust formed in the dense swept-up shell between the forward and reverse shocks, and not in the freely expanding SN ejecta. Rapid cooling leading to dust formation may have been aided by extremely high shell densities, as indicated by He I line ratios. The brief epoch of dust formation is accompanied by He II 4686 emission and enhanced X-ray emission. These clues suggest that the unusual dust formation in this object was not due to properties of the SN itself, but instead -- like most peculiarities of SN 2006jc -- was a consequence of the dense environment created by an LBV-like eruption 2 yr before the SN.Comment: ApJ, accepted. added some discussion and 2 figures, better title, conclusions same as previous version. 12 pages, 4 color fig

    Variation in amino acid and lipid composition of latent fingerprints

    Get PDF
    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of ‘real’ latent fingerprints collected on a non-porous surface was analysed by gas chromatography–mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9- octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting ‘groomed’ fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the ‘natural’ and ‘groomed’ fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints

    The peculiar B-type supergiant HD327083

    Full text link
    Coude spectroscopic data of a poorly-studied peculiar supergiant, HD327083, are presented. Halpha and Hbeta line profiles have been fitted employing a non-LTE code adequate for spherically expanding atmospheres. Line fits lead to estimates of physical parameters. These parameters suggest that HD327083 may be close to the Luminous Blue Variable phase but it is also possible that it could be a B[e] Supergiant.Comment: 4 pages, 4 figures, Accepted for publication in A&A Lette

    Direct Measurement of the System-Environment Coupling as a Tool For Understanding Decoherence and Dynamical Decoupling

    Full text link
    Decoherence is a major obstacle to any practical implementation of quantum information processing. One of the leading strategies to reduce decoherence is dynamical decoupling --- the use of an external field to average out the effect of the environment. The decoherence rate under any control field can be calculated if the spectrum of the coupling to the environment is known. We present a direct measurement of the bath coupling spectrum in an ensemble of optically trapped ultracold atoms, by applying a spectrally narrow-band control field. The measured spectrum follows a Lorentzian shape at low frequencies, but exhibits non-monotonic features at higher frequencies due to the oscillatory motion of the atoms in the trap. These features agree with our analytical models and numerical Monte-Carlo simulations of the collisional bath. From the inferred bath-coupling spectrum, we predict the performance of well-known dynamical decoupling sequences: CPMG, UDD and CDD. We then apply these sequences in experiment and compare the results to predictions, finding good agreement in the weak-coupling limit. Thus, our work establishes experimentally the validity of the overlap integral formalism, and is an important step towards the implementation of an optimal dynamical decoupling sequence for a given measured bath spectrum.Comment: 9 pages, 6 figure
    corecore