754 research outputs found
High intermodulation gain in a micromechanical Duffing resonator
In this work we use a micromechanical resonator to experimentally study small
signal amplification near the onset of Duffing bistability. The device consists
of a PdAu beam serving as a micromechanical resonator excited by an adjacent
gate electrode. A large pump signal drives the resonator near the onset of
bistability, enabling amplification of small signals in a narrow bandwidth. To
first order, the amplification is inversely proportional to the frequency
difference between the pump and signal. We estimate the gain to be about 15dB
for our device
Coexistence of a triplet nodal order-parameter and a singlet order-parameter at the interfaces of ferromagnet-superconductor Co/CoO/In junctions
We present differential conductance measurements of Cobalt / Cobalt-Oxide /
Indium planar junctions, 500nm x 500nm in size. The junctions span a wide range
of barriers, from very low to a tunnel barrier. The characteristic conductance
of all the junctions show a V-shape structure at low bias instead of the
U-shape characteristic of a s-wave order parameter. The bias of the conductance
peaks is, for all junctions, larger than the gap of indium. Both properties
exclude pure s-wave pairing. The data is well fitted by a model that assumes
the coexistence of s-wave singlet and equal spin p-wave triplet fluids. We find
that the values of the s-wave and p-wave gaps follow the BCS temperature
dependance and that the amplitude of the s-wave fluid increases with the
barrier strength.Comment: 5 pages, Accepted to Phys. Rev.
Nonlinear resonance in a three-terminal carbon nanotube resonator
The RF-response of a three-terminal carbon nanotube resonator coupled to
RF-transmission lines is studied by means of perturbation theory and direct
numerical integration. We find three distinct oscillatory regimes, including
one regime capable of exhibiting very large hysteresis loops in the frequency
response. Considering a purely capacitive transduction, we derive a set of
algebraic equations which can be used to find the output power (S-parameters)
for a device connected to transmission lines with characteristic impedance
.Comment: 16 pages, 8 figure
870 micron observations of nearby 3CRR radio galaxies
We present submillimeter continuum observations at 870 microns of the cores
of low redshift 3CRR radio galaxies, observed at the Heinrich Hertz
Submillimeter Telescope. The cores are nearly flat spectrum between the radio
and submillimeter which implies that the submillimeter continuum is likely to
be synchrotron emission and not thermal emission from dust. The emitted power
from nuclei detected at optical wavelengths and in the X-rays is similar in the
submillimeter, optical and X-rays. The submillimeter to optical and X-ray power
ratios suggest that most of these sources resemble misdirected BL Lac type
objects with synchrotron emission peaking at low energies. However we find
three exceptions, the FR I galaxy 3C264 and the FR II galaxies 3C390.3 and
3C338 with high X-ray to submillimeter luminosity ratios. These three objects
are candidate high or intermediate energy peaked BL Lac type objects. With
additional infrared observations and from archival data, we compile spectral
energy distributions (SEDs) for a subset of these objects. The steep dips
observed near the optical wavelengths in many of these objects suggest that
extinction inhibits the detection and reduces the flux of optical continuum
core counterparts. High resolution near or mid-infrared imaging may provide
better measurements of the underlying synchrotron emission peak.Comment: accepted for publication in A
A class of well-posed parabolic final value problems
This paper focuses on parabolic final value problems, and well-posedness is
proved for a large class of these. The clarification is obtained from Hilbert
spaces that characterise data that give existence, uniqueness and stability of
the solutions. The data space is the graph normed domain of an unbounded
operator that maps final states to the corresponding initial states. It induces
a new compatibility condition, depending crucially on the fact that analytic
semigroups always are invertible in the class of closed operators. Lax--Milgram
operators in vector distribution spaces constitute the main framework. The
final value heat conduction problem on a smooth open set is also proved to be
well posed, and non-zero Dirichlet data are shown to require an extended
compatibility condition obtained by adding an improper Bochner integral.Comment: 16 pages. To appear in "Applied and numerical harmonic analysis"; a
reference update. Conference contribution, based on arXiv:1707.02136, with
some further development
Helium Emission in the Type Ic SN 1999cq
We present the first unambiguous detection of helium emission lines in
spectra of Type Ic supernovae (SNe Ic). The presence of He I lines, with full
width at half maximum ~ 2000 km/s, and the distinct absence of any other
intermediate-width emission (e.g., Halpha), implies that the ejecta of SN Ic
1999cq are interacting with dense circumstellar material composed of almost
pure helium. This strengthens the argument that the progenitors of SNe Ic are
core-collapse events in stars that have lost both their hydrogen and helium
envelopes, either through a dense wind or mass-transfer to a companion. In this
way, SN 1999cq is similar to supernovae such as SN 1987K and SN 1993J that
helped firmly establish a physical connection between Type Ib and Type II
supernovae. The light curve of SN 1999cq is very fast, with an extremely rapid
rise followed by a quick decline. SN 1999cq is also found to exhibit a high
level of emission at blue wavelengths (< 5500 A), likely resulting from either
an unusually large amount of iron and iron-group element emission or
uncharacteristically low reddening compared with other SNe Ic.Comment: 17 pages (AASTeX V5.0), 4 figures, accepted for publication in the
Astronomical Journa
Dust Formation and He II 4686 emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc
We present evidence for the formation of dust grains in an unusual Type Ib SN
based on late-time spectra of SN 2006jc. The progenitor suffered an LBV-like
outburst just 2 yr earlier, and we propose that the dust formation is a
consequence of the SN blast wave overtaking that LBV-like shell. The key
evidence for dust formation is (a) the appearance of a red/near-IR continuum
source fit by 1600 K graphite grains, and (b) fading of the redshifted sides of
He I emission lines, yielding progressively more asymmetric blueshifted lines
as dust obscures receding material. This provides the strongest case yet for
dust formation in any SN Ib/c. Both developments occurred between 51 and 75 d
after peak, while other SNe observed to form dust did so after a few hundred
days. Geometric considerations indicate that dust formed in the dense swept-up
shell between the forward and reverse shocks, and not in the freely expanding
SN ejecta. Rapid cooling leading to dust formation may have been aided by
extremely high shell densities, as indicated by He I line ratios. The brief
epoch of dust formation is accompanied by He II 4686 emission and enhanced
X-ray emission. These clues suggest that the unusual dust formation in this
object was not due to properties of the SN itself, but instead -- like most
peculiarities of SN 2006jc -- was a consequence of the dense environment
created by an LBV-like eruption 2 yr before the SN.Comment: ApJ, accepted. added some discussion and 2 figures, better title,
conclusions same as previous version. 12 pages, 4 color fig
Variation in amino acid and lipid composition of latent fingerprints
The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of ‘real’ latent fingerprints collected on a non-porous surface was analysed by gas chromatography–mass
spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-
octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting ‘groomed’ fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant
quantitative differences between the ‘natural’ and ‘groomed’ fingerprint samples seen for fatty acids
were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints
The peculiar B-type supergiant HD327083
Coude spectroscopic data of a poorly-studied peculiar supergiant, HD327083,
are presented. Halpha and Hbeta line profiles have been fitted employing a
non-LTE code adequate for spherically expanding atmospheres. Line fits lead to
estimates of physical parameters. These parameters suggest that HD327083 may be
close to the Luminous Blue Variable phase but it is also possible that it could
be a B[e] Supergiant.Comment: 4 pages, 4 figures, Accepted for publication in A&A Lette
Direct Measurement of the System-Environment Coupling as a Tool For Understanding Decoherence and Dynamical Decoupling
Decoherence is a major obstacle to any practical implementation of quantum
information processing. One of the leading strategies to reduce decoherence is
dynamical decoupling --- the use of an external field to average out the effect
of the environment. The decoherence rate under any control field can be
calculated if the spectrum of the coupling to the environment is known. We
present a direct measurement of the bath coupling spectrum in an ensemble of
optically trapped ultracold atoms, by applying a spectrally narrow-band control
field. The measured spectrum follows a Lorentzian shape at low frequencies, but
exhibits non-monotonic features at higher frequencies due to the oscillatory
motion of the atoms in the trap. These features agree with our analytical
models and numerical Monte-Carlo simulations of the collisional bath. From the
inferred bath-coupling spectrum, we predict the performance of well-known
dynamical decoupling sequences: CPMG, UDD and CDD. We then apply these
sequences in experiment and compare the results to predictions, finding good
agreement in the weak-coupling limit. Thus, our work establishes experimentally
the validity of the overlap integral formalism, and is an important step
towards the implementation of an optimal dynamical decoupling sequence for a
given measured bath spectrum.Comment: 9 pages, 6 figure
- …
