2,562 research outputs found
Algebras with ternary law of composition and their realization by cubic matrices
We study partially and totally associative ternary algebras of first and
second kind. Assuming the vector space underlying a ternary algebra to be a
topological space and a triple product to be continuous mapping we consider the
trivial vector bundle over a ternary algebra and show that a triple product
induces a structure of binary algebra in each fiber of this vector bundle. We
find the sufficient and necessary condition for a ternary multiplication to
induce a structure of associative binary algebra in each fiber of this vector
bundle. Given two modules over the algebras with involutions we construct a
ternary algebra which is used as a building block for a Lie algebra. We
construct ternary algebras of cubic matrices and find four different totally
associative ternary multiplications of second kind of cubic matrices. It is
proved that these are the only totally associative ternary multiplications of
second kind in the case of cubic matrices. We describe a ternary analog of Lie
algebra of cubic matrices of second order which is based on a notion of
j-commutator and find all commutation relations of generators of this algebra.Comment: 17 pages, 1 figure, to appear in "Journal of Generalized Lie Theory
and Applications
Improved linear response for stochastically driven systems
The recently developed short-time linear response algorithm, which predicts
the average response of a nonlinear chaotic system with forcing and dissipation
to small external perturbation, generally yields high precision of the response
prediction, although suffers from numerical instability for long response times
due to positive Lyapunov exponents. However, in the case of stochastically
driven dynamics, one typically resorts to the classical fluctuation-dissipation
formula, which has the drawback of explicitly requiring the probability density
of the statistical state together with its derivative for computation, which
might not be available with sufficient precision in the case of complex
dynamics (usually a Gaussian approximation is used). Here we adapt the
short-time linear response formula for stochastically driven dynamics, and
observe that, for short and moderate response times before numerical
instability develops, it is generally superior to the classical formula with
Gaussian approximation for both the additive and multiplicative stochastic
forcing. Additionally, a suitable blending with classical formula for longer
response times eliminates numerical instability and provides an improved
response prediction even for long response times
Cross sections for geodesic flows and \alpha-continued fractions
We adjust Arnoux's coding, in terms of regular continued fractions, of the
geodesic flow on the modular surface to give a cross section on which the
return map is a double cover of the natural extension for the \alpha-continued
fractions, for each in (0,1]. The argument is sufficiently robust to
apply to the Rosen continued fractions and their recently introduced
\alpha-variants.Comment: 20 pages, 2 figure
Lipid peroxidation is essential for α-synuclein-induced cell death.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α-synuclein (α-Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α-Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co-cultures of neurons and astrocytes. We found that oligomeric but not monomeric α-Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre-incubation of cells with isotope-reinforced polyunsaturated fatty acids (D-PUFAs) completely prevented the effect of oligomeric α-Syn on lipid peroxidation. Inhibition of lipid peroxidation with D-PUFAs further protected cells from cell death induced by oligomeric α-Syn. Thus, lipid peroxidation induced by misfolding of α-Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease. We have found that aggregated α-synuclein-induced production of reactive oxygen species (ROS) that subsequently stimulates lipid peroxidation and cell death in neurons and astrocytes. Specific inhibition of lipid peroxidation by incubation with reinforced polyunsaturated fatty acids (D-PUFAs) completely prevented the effect of α-synuclein on lipid peroxidation and cell death
Simulator of fuel cells characteristics on the basis of the semiconductor converter
The results of development and research of the simulator of fuel cells characteristics based on the operated pulse converter with direct current and digital alarm processor have been considered. The electrochemical model of fuel cell considering its static and dynamic characteristics is incorporated in the algorithm of the processor work. The specified simulator has on loading terminals the same characteristics of output capacity as a real system. It allows abandoning the use of both the elements and expensive accompanying systems at stages of research, design and realization of independent systems of power supply on the basis of fuel cells
Multilevel Analysis of Oscillation Motions in Active Regions of the Sun
We present a new method that combines the results of an oscillation study
made in optical and radio observations. The optical spectral measurements in
photospheric and chromospheric lines of the line-of-sight velocity were carried
out at the Sayan Solar Observatory. The radio maps of the Sun were obtained
with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the
sunspots were analyzed to study the oscillation processes in the
chromosphere-corona transition region in the layer with magnetic field B=2000
G. A high level of instability of the oscillations in the optical and radio
data was found. We used a wavelet analysis for the spectra. The best
similarities of the spectra of oscillations obtained by the two methods were
detected in the three-minute oscillations inside the sunspot umbra for the
dates when the active regions were situated near the center of the solar disk.
A comparison of the wavelet spectra for optical and radio observations showed a
time delay of about 50 seconds of the radio results with respect to optical
ones. This implies a MHD wave traveling upward inside the umbral magnetic tube
of the sunspot. Besides three-minute and five-minute ones, oscillations with
longer periods (8 and 15 minutes) were detected in optical and radio records.Comment: 17 pages, 9 figures, accepted to Solar Physics (18 Jan 2011). The
final publication is available at http://www.springerlink.co
Semi-Active Suspension System Simulation Using SIMULINK
This paper describes a simulation design procedure aimed to achieve improved performance of the vehicle semi-active suspension. The issues related to the design of vehicle models with skyhook control are discussed. Three basic models with linear parameters are explained: quarter-, half- and full-car. The road profile is generated from a spatial power spectral density (PSD) to represent a typical road (based on ISO 8608 classification). The normalized root-mean-square values of sprung mass acceleration and tyre load forces are used to assess the vehicle ride comfort and handling performance based on five benchmark road profiles employed in industrial tests
Dopamine protects neurons against glutamate-induced excitotoxicity
Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma and neurodegenerative disease. Loss of calcium homeostasis is a key mediator of glutamate-induced cell death. The neurotransmitter dopamine (DA) is known to modulate calcium signalling, and here we show that it can do so in response to physiological concentrations of glutamate. Furthermore, DA is able to protect neurons from glutamate-induced cell death at pathological concentrations of glutamate. We demonstrate that DA has a novel role in preventing delayed calcium deregulation in cortical, hippocampal and midbrain neurons. The effect of DA in abolishing glutamate excitotoxicity can be induced by DA receptor agonists, and is abolished by DA receptor antagonists. Our data indicate that the modulation of glutamate excitotoxicity by DA is receptor-mediated. We postulate that DA has a major physiological function as a safety catch to restrict the glutamate-induced calcium signal, and thereby prevent glutamate-induced cell death in the brain
- …