50,087 research outputs found

    Coupling Rydberg atoms to microwave fields in a superconducting coplanar waveguide resonator

    Get PDF
    Rydberg helium atoms traveling in pulsed supersonic beams have been coupled to microwave fields in a superconducting coplanar waveguide (CPW) resonator. The atoms were initially prepared in the 1s55s 3^3S1_1 Rydberg level by two-color two-photon laser excitation from the metastable 1s2s 3^3S1_1 level. Two-photon microwave transitions between the 1s55s 3^3S1_1 and 1s56s 3^3S1_1 levels were then driven by the 19.556 GHz third-harmonic microwave field in a quarter-wave CPW resonator. This superconducting microwave resonator was fabricated from niobium nitride on a silicon substrate and operated at temperatures between 3.65 and 4.30 K. The populations of the Rydberg levels in the experiments were determined by state-selective pulsed electric field ionization. The coherence of the atom-resonator coupling was studied by time-domain measurements of Rabi oscillations.Comment: 6 pages, 5 figure

    Theory of the cold collision frequency shift in 1S--2S spectroscopy of Bose-Einstein-condensed and non-condensed hydrogen

    Full text link
    We show that a correct formulation of the cold collision frequency shift for two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen is consistent with experimental data. Our treatment includes transport and inhomogeneity into the theory of a non-condensed gas, which causes substantial changes in the cold collision frequency shift for the ordinary thermal gas, as a result of the very high frequency (3.9kHz) of transverse trap mode. For the condensed gas, we find substantial corrections arise from the inclusion of quasiparticles, whose number is very large because of the very low frequency (10.2Hz) of the longitudinal trap mode. These two effects together account for the apparent absence of a "factor of two" between the two possibilities. Our treatment considers only the Doppler-free measurements, but could be extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we predict a characteristic "foot" extending into higher detunings than can arise from the condensate alone, as a result of a correct treatment of the statistics of thermal quasiparticles.Comment: 16 page J Phys B format plus 6 postscript figure

    Novel Dynamical Resonances in Finite-Temperature Bose-Einstein Condensates

    Full text link
    We describe a variety of intriguing mode-coupling effects which can occur in a confined Bose-Einstein condensed system at finite temperature. These arise from strong interactions between a condensate fluctuation and resonances of the thermal cloud yielding strongly non-linear behaviour. We show how these processes can be affected by altering the aspect ratio of the trap, thereby changing the relevant mode-matching conditions. We illustrate how direct driving of the thermal cloud can lead to significant shifts in the excitation spectrum for a number of modes and provide further experimental scenarios in which the dramatic behaviour observed for the m=0m=0 mode at JILA (Jin {\it et al.} 1997) can be repeated. Our theoretical description is based on a successful second-order finite-temperature quantum field theory which includes the full coupled dynamics of the condensate and thermal cloud and all relevant finite-size effects

    Quantitative test of thermal field theory for Bose-Einstein condensates II

    Full text link
    We have recently derived a gapless theory of the linear response of a Bose-condensed gas to external perturbations at finite temperature and used it to explain quantitatively the measurements of condensate excitations and decay rates made at JILA [D. S. Jin et.al., Phys. Rev. Lett. 78, 764 (1997)]. The theory describes the dynamic coupling between the condensate and non-condensate via a full quasiparticle description of the time-dependent normal and anomalous averages and includes all Beliaev and Landau processes. In this paper we provide a full discussion of the numerical calculations and a detailed analysis of the theoretical results in the context of the JILA experiment. We provide unambiguous proof that the dipole modes are obtained accurately within our calculations and present quantitative results for the relative phase of the oscillations of the condensed and uncondensed atom clouds. One of the main difficulties in the implementation of the theory is obtaining results which are not sensitive to basis cutoff effects and we have therefore developed a novel asymmetric summation method which solves this problem and dramatically improves the numerical convergence. This new technique should make the implementation of the theory and its possible future extensions feasible for a wide range of condensate populations and trap geometries.Comment: 23 pages, 11 figures, revtex 4. Submitted to PRA. Sequel to: S. A. Morgan et al, PRL, 91, 250403 (2003

    Production of Millisecond Dips in Sco X-1 Count Rates by Dead Time Effects

    Full text link
    Chang et al. (2006) reported millisecond duration dips in the X-ray intensity of Sco X-1 and attributed them to occultations of the source by small trans-Neptunian objects (TNOs). We have found multiple lines of evidence that these dips are not astronomical in origin, but rather the result of high-energy charged particle events in the RXTE PCA detectors. Our analysis of the RXTE data indicates that at most 10% of the observed dips in Sco X-1 could be due to occultations by TNOs, and, furthermore, we find no positive or supporting evidence for any of them being due to TNOs. We therefore believe that it is a mistake to conclude that any TNOs have been detected via occultation of Sco X-1.Comment: Submitted to ApJ; uses emulateapj.cls, 8 pages with 8 figure

    Recent Langley helicopter acoustics contributions

    Get PDF
    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included
    • …
    corecore