36,932 research outputs found
Real Time Evolution in Quantum Many-Body Systems With Unitary Perturbation Theory
We develop a new analytical method for solving real time evolution problems
of quantum many-body systems. Our approach is a direct generalization of the
well-known canonical perturbation theory for classical systems. Similar to
canonical perturbation theory, secular terms are avoided in a systematic
expansion and one obtains stable long-time behavior. These general ideas are
illustrated by applying them to the spin-boson model and studying its
non-equilibrium spin dynamics.Comment: Final version as accepted for publication in Phys. Rev. B (4 pages, 3
figures
Covariant quantum measurements may not be optimal
Quantum particles, such as spins, can be used for communicating spatial
directions to observers who share no common coordinate frame. We show that if
the emitter's signals are the orbit of a group, then the optimal detection
method may not be a covariant measurement (contrary to widespread belief). It
may be advantageous for the receiver to use a different group and an indirect
estimation method: first, an ordinary measurement supplies redundant numerical
parameters; the latter are then used for a nonlinear optimal identification of
the signal.Comment: minor corrections, to appear in J. Mod. Opt. (proc. of Gdansk conf.
The "Unromantic Pictures" of Quantum Theory
I am concerned with two views of quantum mechanics that John S. Bell called
``unromantic'': spontaneous wave function collapse and Bohmian mechanics. I
discuss some of their merits and report about recent progress concerning
extensions to quantum field theory and relativity. In the last section, I
speculate about an extension of Bohmian mechanics to quantum gravity.Comment: 37 pages LaTeX, no figures; written for special volume of J. Phys. A
in honor of G.C. Ghirard
Feynman's Path Integrals and Bohm's Particle Paths
Both Bohmian mechanics, a version of quantum mechanics with trajectories, and
Feynman's path integral formalism have something to do with particle paths in
space and time. The question thus arises how the two ideas relate to each
other. In short, the answer is, path integrals provide a re-formulation of
Schroedinger's equation, which is half of the defining equations of Bohmian
mechanics. I try to give a clear and concise description of the various aspects
of the situation.Comment: 4 pages LaTeX, no figures; v2 shortened a bi
Densities and abundances of hot cometary ions in the coma of P/Halley
On its flight by P/Halley, the Giotto spacecraft carried a High Energy Range Spectrometer (HERS) for measuring the properties of cometary ions picked up by the solar wind in the nearly collisionless regions of the coma. Preliminary estimates of the ion densities observed by HERS were reevaluated and extended; density profiles along the Giotto trajectory are presented for 13 values of ion mass/charge. Comparison with the physical-chemical model of the interaction of sunlight and the solar wind with the comet by other researchers reveals that, with the exception of protons and H2(+), all ion densities were at least an order of magnitude higher than predicted. The high ion densities cannot be explained on the basis of compression of the plasma, but require additional or stronger ionization mechanisms. Ratios of the densities of different ion species reveal an overabundance of carbonaceous material and an underabundance of H2(+) compared to the predictions of the Schmidt. While the densities of solar wind ions (H(+) and He(++)) changed sharply across a magnetic discontinuity located 1.35(10)(exp 5) km from the comet, this feature, which has been called both the 'cometopause' and the 'magnetic pileup boundary' was barely distinguishable in the density profiles of hot cometary ions. This result is consistent with the interpretation that the magnetic pileup boundary detected by Giotto was caused by a discontinuity in the solar wind and is not an intrinsic feature of the interaction of the solar wind with an active comet
Trajectories and Particle Creation and Annihilation in Quantum Field Theory
We develop a theory based on Bohmian mechanics in which particle world lines
can begin and end. Such a theory provides a realist description of creation and
annihilation events and thus a further step towards a "beable-based"
formulation of quantum field theory, as opposed to the usual "observable-based"
formulation which is plagued by the conceptual difficulties--like the
measurement problem--of quantum mechanics.Comment: 11 pages LaTeX, no figures; v2: references added and update
- …