21 research outputs found

    Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids

    Get PDF
    In this paper, ionic liquid treatment was applied to produce nanometric cellulose particles of two polymorphic forms. A complex characterization of nanofillers including wide-angle X-ray scattering, Fourier transform infrared spectroscopy, and particle size determination was performed. The evaluated ionic liquid treatment was effective in terms of nanocrystalline cellulose production, leaving chemical and supermolecular structure of the materials intact. However, nanocrystalline cellulose II was found to be more prone to ionic liquid hydrolysis leading to formation larger amount of small particles. Each nanocrystalline cellulose was subsequently mixed with a solution of chitosan, so that composite films containing 1, 3, and 5% mass/mass of nanometric filler were obtained. Reference samples of chitosan and chitosan with micrometric celluloses were also solvent casted. Thermal, mechanical, and morphological properties of films were tested and correlated with properties of filler used. The results of both, tensile tests and thermogravimetric analysis showed a significant discrepancy between composites filled with nanocrystalline cellulose I and nanocrystalline cellulose II

    Highly Insulative PEG-Grafted Cellulose Polyurethane Foams—From Synthesis to Application Properties

    No full text
    In this paper, native cellulose I was subjected to alkaline treatment. As a result, cellulose I was transformed to cellulose II and some nanometric particles were formed. Both polymorphic forms of cellulose were modified with poly(ethylene glycol) (PEG) and then used as fillers for polyurethane. Composites were prepared in a one-step process. Cellulosic fillers were characterized in terms of their chemical (Fourier transformation infrared spectroscopy) and supermolecular structure (X-ray diffraction), as well as their particle size. Investigation of composite polyurethane included measurements of density, characteristic processing times of foam formation, compression strength, dimensional stability, water absorption, and thermal conductivity. Much focus was put on the application aspect of the produced insulation polyurethane foams. It was shown that modification of cellulosic filler with poly(ethylene glycol) has a positive influence on formation of polyurethane composites—if modified filler was used, the values of compression strength and density increased, while water sorption and thermal conductivity decreased. Moreover, it was proven that the introduction of cellulosic fillers into the polyurethane matrix does not deteriorate the strength or thermal properties of the foams, and that composites with such fillers have good application potential

    Nanocellulose-Based Polymer Composites Functionalized with New Gemini Ionic Liquids

    No full text
    The manuscript discusses the application of dimeric imidazolium ionic liquids with an aliphatic linker of different lengths, constituting a new class of compounds called gemini, for the modification of renewable materials. This innovative functionalization with the use of ionic liquids made it possible to obtain polymer composite nanomaterials with renewable fillers, which will reduce the consumption of petroleum-based raw materials and also be directly related to the reduction of energy intensity. Renewable filler in the form of nanocellulose modified with ionic liquids, as well as polymer composites with such filler obtained by extrusion and injection molding techniques, were subjected to detailed characterization using techniques like: X-ray diffraction (XRD), Fourier transform spectroscopy (FTIR), dispersion studies (DLS), morphological analysis (SEM), differential scanning calorimetry (DSC), hot-stage polarized light microscopy and characterization of mechanical properties. The use of innovative dimeric ionic liquids proved to be an effective method to carry out efficient functionalization of cellulose. This provided a stable space structure between polysaccharide particles, limiting aggregate formation. It was shown that chemical modification with ionic liquids has a significant effect on the nucleation activity of cellulose fillers and the formation of the supermolecular structure of the polymer matrix, which consequently allowed to obtain polymer composites with excellent strength characteristics and increased flexibility, which will allow to increase their application potential. Innovative ionic liquids have contributed to obtaining green nanomaterials with excellent functional properties, which have not been described in the literature so far

    Cladium mariscus Saw-Sedge versus Sawdust—Efficient Biosorbents for Removal of Hazardous Textile Dye C.I. Basic Blue 3 from Aqueous Solutions

    No full text
    Bio-based waste materials are more often used as effective and cheap adsorbents to remove toxic organic compounds such dyes. Batch adsorption of C.I. Basic Blue 3 (BB3) onto Cladium mariscus saw-sedge was studied in comparison with sawdust obtained from various species of wood in order to explore their potential application as low-cost sorbents for basic dye removal from wastewaters. The effect of phase contact time (1–240 min), initial dye concentration (50–200 mg/L), and the auxiliaries presence (10–60 g/L NaCl and 0.1–0.75 g/L anionic surfactant) on BB3 uptake was investigated. The adsorption kinetic data followed the pseudo-second order equation rather than pseudo-first order one. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The monolayer sorption capacities decreased from 44.29 to 42.07 mg/g for Cladium mariscus saw-sedge and from 28.69 to 27.5 mg/g for sawdust with temperature increasing from 20 to 50 °C. The thermodynamic parameters such as the change in free energy (∆G°), enthalpy (∆H°), and entropy (∆S°) were calculated, too

    Structure and Properties of Polylactide Composites with TiO<sub>2</sub>–Lignin Hybrid Fillers

    No full text
    The research presented in this article focuses on the use of inorganic–organic material, based on titanium dioxide and lignin, as a filler for polylactide (PLA) biocomposites. To date, no research has been conducted to understand the impact of hybrid fillers consisting of TiO2 and lignin on the supermolecular structure and crystallization abilities of polylactide. Polymer composites containing 1, 3 or 5 wt.% of hybrid filler or TiO2 were assessed in terms of their structure, morphology, and thermal properties. Mechanical properties, including tensile testing, bending, impact strength, and hardness, were discussed. The hybrid filler is characterized by a very good electrokinetic stability at pH greater than 3–4. The addition of all fillers led to a small decrease in the glass transition temperature but, most importantly, the addition of 1% of the hybrid filler to the PLA matrix increased the degree of crystallinity of the material by up to 20%. Microscopic studies revealed differences in the crystallization behavior and nucleation ability of fillers. The use of hybrid filler resulted in higher nucleation density and shorter induction time than in unfilled PLA or PLA with only TiO2. The introduction of small amounts of hybrid filler also affected the mechanical properties of the composites, causing an increase in bending strength and hardness. This information may be useful from a technological process standpoint and may also help to increase the range of applicability of biobased materials

    Functional MgO–Lignin Hybrids and Their Application as Fillers for Polypropylene Composites

    No full text
    Inorganic&ndash;organic hybrids are a group of materials that have recently become the subject of intense scientific research. They exhibit some of the specific properties of both highly durable inorganic materials (e.g., titanium dioxide, zinc) and organic products with divergent physicochemical traits (e.g., lignin, chitin). This combination results in improved physicochemical, thermal or mechanical properties. Hybrids with defined characteristics can be used as fillers for polymer composites. In this study, three types of filler with different MgO/lignin ratio were used as fillers for polypropylene (PP). The effectiveness of MgO-lignin binding was confirmed using Fourier transform infrared spectroscopy. The fillers were also tested in terms of thermal stability, dispersive-morphological properties as well as porous structure. Polymer composites containing 3 wt.% of each filler were subjected to wide angle X-ray diffraction tests, differential scanning calorimetry and microscopic studies to define their structure, morphology and thermal properties. Additionally, tensile tests of the composites were performed. It was established that the composition of the filler has a significant influence on the crystallization of polypropylene&mdash;either spherulites or transcrystalline layers were formed. The value of Young&rsquo;s modulus and tensile strength remained unaffected by filler type. However, composites with hybrid fillers exhibited lower elongation at break than unfilled polypropylene

    Thermal and Mechanical Properties of Silica–Lignin/Polylactide Composites Subjected to Biodegradation

    No full text
    In this paper, silica&#8315;lignin hybrid materials were used as fillers for a polylactide (PLA) matrix. In order to simulate biodegradation, PLA/hybrid filler composite films were kept in soil of neutral pH for six months. Differential scanning calorimetry (DSC) allowed analysis of nonisothermal crystallization behavior of composites, thermal analysis provided information about their thermal stability, and scanning electron microscopy (SEM) was applied to define morphology of films. The influence of biodegradation was also investigated in terms of changes in mechanical properties and color of samples. It was found that application of silica&#8315;lignin hybrids as fillers for PLA matrix may be interesting not only in terms of increasing thermal stability, but also controlled biodegradation. To the best knowledge of the authors, this is the first publication regarding biodegradation of PLA composites loaded with silica&#8315;lignin hybrid fillers

    The Study of Glucose and Xylose Content by Acid Hydrolysis of Ash Wood (Fraxinus excelsior L.) after Thermal Modification in Nitrogen by HPLC Method

    No full text
    This study aimed to determine glucose and xylose content by acid hydrolysis of wood samples, both unmodified and thermally modified (modification time was 2, 6, 10 hours), using high performance liquid chromatography. Optimization of the hydrolysis process on the native ash wood samples showed that 3 h was the best time in the hydrolysis process. After that time, 58.8% of glucose and 20.8% of xylose were obtained. In turn, chromatographic analysis showed incomplete hydrolysis of ash wood samples, which were modified in a nitrogen atmosphere, especially at shorter times (2 and 6 h) of modification. With longer modification times (10 h), the hydrolysis of ash wood samples was completed. The above mentioned problem was caused mainly by the increase of cellulose crystallinity degree. The decrease of this parameter was observed only after 10 h of thermal modification, which would facilitate the process of acidic hydrolysis. Additionally, it was observed that the thermal modification of ash wood at 190 °C in a nitrogen atmosphere for 10 h caused a drastic decrease in the xylose content (from 20.8% to 8.0%) and only a slight decrease in the glucose content (from 58.8% to 54.9%)
    corecore