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1. Introduction  

In recent years, one can observe the tendency to replace the thermoplastic polymers by the 

composite materials in several branches of industry, e.g. automotive and building 

engineering (Peijs, 2003), aviation and packaging industry (Bledzki & Gassan, 1999). The 

composite materials obtained by reinforcement of the polypropylene with lignocellulosic 

fillers are known to show improved mechanical and physical properties in comparison with 

the pure propylene (Averous & Le Digabel, 2006; Bhattacharyya et al., 2003; Mohanty et al., 

2000). Composites made from polypropylene and wood fibre are characterized by 

significantly higher stiffness than unreinforced polypropylene (Bhattacharyya et al., 2003). 

The loading of the polypropylene with rice husk powder increases Young’s modulus and 

flexural modulus of the composite, compared with those of the polypropylene (Hattotuwa 

et al., 2002). The studies of the fire behavior (Borysiak et al., 2006) revealed a significant 

decrease of such an essential parameter as the heat release rate (HRR) peak, especially low 

value of HRRmax in comparison with those of the polypropylene. Moreover, very important 

feature of the composites with lignocellulosic materials is their partial biodegradability as 

the filler materials come from natural resource. In this chapter we would like to point out to 

improved acoustic and dielectric properties of the polypropylene-lignocellulosic materials 

composites in comparison with the pure polypropylene based on our measurement results.  

Nowadays, technical progress in manufacturing the modern equipment, generating higher 

sound pressure, implies the need to search for new sound absorbing materials to improve the 

human comfort today. The ascending requirements related to the construction materials 

absorbing the undesired noise occur mainly in the automotive industry and building. The 

commonly used and unporous materials as ceramic tile, concrete, cement, fiberboard and 

playwood are characterized by weak sound absorption properties with the sound absorption 

coefficient bellow 5% in the frequency range from 125 Hz to 8000 Hz (Tiwari et al., 2004; Yang 

et al., 2003). The sound absorption capacity of the environment is usually corrected by the 

sound absorbance systems made from glass wool, foam (metals and polyurethanes), rubber, 

mineral fibres and their composites. Although the sound absorption can be significantly 
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increased due to installation of these traditionally applied materials, they cause environmental 

pollution and pose danger to human health. Recent tendency towards the environmental 

protection stimulates the utilization of natural materials as sound absorbers, e. g. random cut 

rice straw (Yang et al., 2003), coconut coir (Nor et al., 2004), bamboo (Liu & Hu, 2008) and tea-

leaf-fibre (Ersoy & Kucuk, 2009). We propose the use of composites made from polypropylene 

and lignocellulosic material derived from hemp, flax, beech wood and rapeseed straw as 

promising sound absorbers (Markiewicz et al., 2009). 

Combination of the polymer and the lignocellulosic material results in new dielectric 

properties of the composite. The proper formation of the dielectric properties of the 

composites is very important in the field of their application, particularly when they are 

designed as electronic packaging. In this case, the electrical parameters of the 

microelectronic devices, such as signal attenuation, propagation velocity, and cross talk, are 

influenced by the dielectric permittivity value ’, dielectric losses ” and their temperature 

stability in a wide frequency range (Pecht et al., 1999; Chung, 1995; Subodh et al., 2007). On 

one hand the permittivity ’ should not be low because of the demand for the 

miniaturization of the device but on the other hand it cannot be too large in order to enable 

the high signal propagation speed. The signal delay Td propagated through the metal 

embedded in the packaging material is determined by the dielectric permittivity ’ 
according to the formula (Tummala, 1991): 

 
'

dT
c


  (1) 

where c  is the elastic coefficient. It is evident that high dielectric permittivity ’ reduces the 

signal propagation speed. Similarly, in the case of application of the composite as the 

substrate in sensor of acoustic surface waves the signal propagation speed v is reduced due 

to high dielectric permittivity ’  in accordance with the relationship: 

 

2

2' 1

e
c

v  



   , (2) 

where e denotes the piezoelectric coefficient,  stands for the density and  is the factor of 

decreasing the signal amplitude inside the substrate material (Soluch, 1980). In this chapter, 

the relationship between the dielectric permittivity ’ of the composite and the volume 

fraction of the lignocellulosic material is established. The effect of temperature variation 

from 150 to 450 K on the dielectric spectrum of polypropylene and the composites was 

investigated in the frequency range 100 Hz to 1MHz.  

2. Methods of sample preparation  

Polypropylene-lignocellulosic materials were prepared from the following materials: 

- isotactic polypropylene (PP) type Malen F-401 (melt flow rate MFR230/2.16 = 2.4 -3.2g/10 
min, isotacticity 95 %), produced by Basell Orlen Polyolefins (Poland) was used as a 
matrix for preparation of the composites; 
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- lignocellulosic materials derived from hemp, flax, beech, pine, rapeseed straw were 
used as filling materials. 

 

Number Kind of material 
Density 

[kg/m3] 

No. 1 Polypropylene (PP) 881.8 

No. 2 PP+40% of crumble hemp plant 872.8 

No. 3 PP+40% of long hemp fibres 927.9 

No. 4 PP+40% of long flax fibres 934.6 

No. 5 PP+40% of  rapeseed straw Kaszub 918.8 

No. 6 PP+40% of crude beech wood 803.5 

No. 7 PP+20% of crude beech wood 921.0 

No. 8 PP+20% of beech modified with succinic anhydride 920.7 

No. 9 PP+20% of crude pine wood 850.9 

No. 10 PP+20% of pine modified with succinic anhydride 974.1 

No. 11 PP+30% of crude rapeseed straw Kaszub 889.6 

No. 12 
PP+30% of rapeseed straw Kaszub modified with acetic 

anhydride 
904.0 

No. 13 PP+30% of crude rapeseed straw Californium 924.8 

No. 14 
PP+30% of rapeseed straw Californium modified with acetic 

anhydride 
969.9 

No. 15 PP+25% of short hemp fibres 862.5 

No. 16 PP+25% of hemp shivers 911.3 

No. 17 PP+25% of short flax fibres 883.0 

No. 18 PP+25% of flax shivers 943.1 

No. 19 PP+30% of crude beech wood 922.1 

No. 20 PP+30% of mercerized beech wood 922.0 

No. 21 PP+30% of beech modified with maleic anhydride 921.9 

No. 22 PP+30% of crude pine wood 861.1 

No. 23 PP+30% of mercerized pine wood 895.4 

No. 24 PP+30% of pine modified with maleic anhydride 901.3 

No. 25 PP+30% of mercerized rapeseed straw Kaszub 902.5 

No. 26 PP+30% of mercerized rapeseed straw Californium 950.7 

Table 1. Specification of the samples investigated 

Two different methods were used to make the composites. The first one consisted in mixing 

crumble lignocellulosic materials with polypropylene granulate in different proportion (20 – 

40 wt. % of natural component). After that, the extrusion was carried out using a “Fairex” 
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(McNell Akron Repiquetn, France) single-screw extruder, L/D=25. The composite material 

was obtained in a granulate form (Polish Patent 186577, 2004). The composite granulates 

were melted in mould between heating plates at the temperature of 200oC under load of 

3000 kG to obtain the samples required for the experiments.  

The composites containing the long hemp and flax fibres were produced in a different way. 
A technique of hydraulic pressing at temperature 200oC under load of 3000 kG (Polish Patent 
190405, 2005). 

Finally, the samples took the shape of discs. Table 1 specifies all the samples prepared. 

3. Acoustic properties of the polypropylene reinforced with lignocellulosic  

3.1 Effect of reinforcement of polypropylene with lignocellulosic materials on the 
acoustic properties  

The sound absorptive power of a given material sample is characterized by the sound 

absorption coefficient defined as the ratio of the acoustic wave energy Ea absorbed by the 
sample to the total energy Ei incident on the sample:  

 a

i

E

E
  . (3) 

Generally, the composites are known to exhibit better sound absorption than the 
homogenous materials. The fact results from the additivity of all kinds of acoustic energy 
losses (Epstein & Carhart, 1953; Vinogradov, 2004). The sound wave propagated through 
the inhomogeneous medium interacts with a great number of suspended particles, which 
differ by the density, compressibility and thermophysical parameters from the matrix. This 
leads to the additional acoustic energy losses compared to that in the matrix. The property 

of the additivity allows to express the sound absorption coefficient of the composite  as a 
sum of four components:  

 0 F H S        , (4) 

where: 0 -  the coefficient of the matrix, F - the coefficient due to friction between filler 

particles and the matrix, H - the coefficient related to the heat exchange between the 

particles and the matrix and S - the coefficient caused by the decay of the acoustic wave in 
forward direction due to scattering by the particles. The results of the experimental studies 
by I. S. Kol’tsova et al. (Vinogradov, 2004) show that the sound absorption due to the 
scattering play an important role when the particle sizes are comparable or larger than the 
sound wave length. Thus, in the case of interaction between an acoustic waves of low 
frequency and the particles of micrometer/millimetre dimensions, the losses in acoustic 
energy due to friction and interfacial heat exchange play the main role.  The different 
densities of the particles and the matrix are the reason for which the sound wave induced 
motions of both compounds can be considered as the separate ones with the friction existing 
between them. In real media, viscous forces arise balancing the motions of the particles and 
the matrix and giving rise to the sound absorption. When the heating coefficients on 
compression of both components are different, the effect of the variable sound pressure on 
the composite results in heat exchange between the components. At a macroscale, the 

www.intechopen.com



 
Acoustic and Dielectric Properties of Polypropylene-Lignocellulosic Materials Composites 

 

197 

process of compression and expansion proceeds adiabatically. However, at a microscale, i. e. 
in the scale of particle sizes, the process is nonadiabatic with the degree of heat exchange 
dependent on the frequency. At low frequencies, the temperature difference between the 
particles and the matrix has time to balance and the process is microscopically isothermal. In 
the higher frequency range, the process follows adiabatically at a microscale because 
balancing does not occur. The heat transfer through the filler particle - matrix interface is the 
reason for acoustic energy absorption (Vinogradov, 2004). Taking into account the above 
considerations, it can be stated that the increased sound absorption of the composites results 
from friction and interfacial heat exchange. This is an isothermal process, since the filler 
particles are of several millimetres in length and bellow millimetre in width. 

The numerical calculation related to the elastic wave propagation in anisotropic media was 

initiated by Biot in 1955 (Biot, 1955, 1956a, 1956b). Biot used Lagrange’s equations to derive 

a set of differential equations that govern the separated motions of a porous solid and a 

compressible viscous fluid confined to it. In 1962 Biot extended the acoustic propagation 

theory in a wider context of the dynamics of anisotropic media (Biot,1962a, 1962b). The 

theory is applied to the materials where fluid and solid are of comparable densities. As 

follows from Table 1, the densities of the composites differ from that of the polypropylene 

no more than 10% and the criterion of the applicability of the Biot theory is fulfilled. The 

plots of frequency dependence of sound absorption were derived by Biot for different 

combinations of elastic constants and densities of the porous solid and that of fluid taking 

into account the additional apparent mass due to inertia coupling. The theoretical curves 

(Biot, 1956b) exhibit a maximum value of the absorption at a characteristic frequency which 

depends on the kinematic viscosity of the fluid and pore diameter. The maxima are very 

pronounced in the case of fluid - saturated porous solids characterized by the elastic 

properties and densities far from the “compatibility condition”: 

 
2

1
1 2

1
c

V
z

V
  , (5) 

where V1 stands for the velocity of the stress wave in a real anisotropic solid and Vc 

represents this velocity when the relative motion between fluid and solid is prevented in 

some way. The less the fraction z1 the more enhanced are the maxima.  

Acoustic standing wave method (Markiewicz et al., 2009) is the most popular way to 

determine the sound absorptive power of the material sample subjected to the plane 

acoustic wave. In this method, plane acoustic waves are generated by a loudspeaker placed 

at one end of a tube while the other end is terminated by the material sample. Due to the 

reflections from the sample, standing wave is produced in the tube as the superposition of 

the incident wave with the amplitude A and the reflected one with the amplitude B. The 

reflected wave is characterized by lower amplitude and shifted phase in comparison to the 

incident one. The probe microphone, moved inside the tube, receives the alternating 

acoustic pressure of minimum amplitude pmin=A-B at the distance of /4 ( – wavelength) 

from the sample followed by the pressure of maximum value pmax=A+B at /2. As the 

acoustic wave energy is proportional to the square of the sound pressure, the equation (3) 

can be written:  
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              
, (6)  

where Er denotes the energy of the reflected wave. The equation (6) shows that the 

absorption coefficient  can be easily determined by means of the measurement of  pmin and 
pmax amplitudes of the sound pressure inside the tube. 

Figs. 1 and 2 show the results of the measurement of sound absorption coefficient  for pure 

polypropylene and the composites with lignocellulosic materials. The values of  coefficient  

were measured at the frequencies: 1000, 1800, 3000, 4000, 5000 and 6300 Hz according to the 

method mentioned above. As follows from the figures, the polypropylene is characterized 

by the relatively weak sound absorption. The values of coefficient  vary between 2 and 13% 

with the tendency to slightly decrease with increasing frequency. Fig. 1 shows the effect of 

the addition of 40 wt. % of hemp fillers on the absorption spectrum. The effect is dominant 

in the range of higher frequencies. Starting from the frequency of 3000Hz, the value of the 

coefficient  increases rapidly up to about 25% and maintains at this level up to 6300 Hz. 

Below the critical frequency 3000 Hz the effect of the addition of the hemp fillers is 

inconsiderable. One can even notice a small decrease of the coefficient  at 1800 Hz. Taking 

into account the fact that two different methods were used to prepare the samples No. 2 and 

No. 3 (extrusion and hydraulic pressing), one can conclude that the manufacturing 

procedure does not influence the sound absorption in the case of the composites with hemp 

filler. The composites containing long flax fibres,  crumble rapeseed and crumble beech 

wood exhibit also better sound absorption in comparison with pure polypropylene but the 

frequency dependence of the coefficient  is quite different (Fig. 2). For these materials the 

maxima of  coefficient are observed at the  frequencies  of  3000 Hz or  4000 Hz. The   

differences   in   sound absorption by composites containing hemp and the ones based on 

fillers: flax, rapeseed straw, beech wood can be explained taking into account the Biot 

theory. The composites with hemp fillers seem to be nearest the “compatibility condition” 

among the investigated materials. The maxima of the absorption are not noticeable in the 

frequency range of the measurement, on the contrary to the remaining fillers. The 

composition of polypropylene and hemp results in such a combination of elastic constants 

and densities that the relative motion between filler and matrix is prevented. The 

discrepancies in sound absorption characteristics can result also from the filler morphology 

and its chemical composition. The width of hemp fibres (30 m) is larger  in comparison 

with flax fibres (20 m). Moreover, hemp plant is known to have the dimensions of the 

anatomic cells larger than the remaining plants under examination. Hemp is distinguished 

for the highest contents of cellulose (75 wt. %) (Averous & Le Digabel, 2006). Flax contains 

71 wt. % of cellulose. Beech and rapeseed are characterized by smaller contents of cellulose: 

beech – 42 wt. % (Nik–Azar et al., 1997) and rapeseed – from 35 to 40 wt. % (Paukszta, 2005, 

2006). The contents of lignin in hemp (4 wt. %) is twice that of flax (2 wt. %) (Averous & Le 

Digabel, 2006). However, beech and rapeseed are known to have relatively large amount  of 

lignin (~20 wt. %) (Paukszta, 2006). Flax is characterized by the contents of pectins (2 wt. %), 

fats (2 wt. %) and waxes (2 wt. %) which are twice those of hemp. It can be concluded that 

the higher contents of the cellulose in the hemp probably enables the sound absorption in 

the relatively wide frequency range.  
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Fig. 1. Frequency dependences of sound absorption coefficient for the samples: No. 1 - PP, 
No. 2 -  PP + 40 wt. % of crumble hemp plant, No. 3 – PP + 40 wt. % of long hemp fibres  
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Fig. 2. Frequency dependences of sound absorption coefficient  for the samples: No. 1 – PP, 
No. 4 -  PP + 40 wt. % of long flax fibres, No. 5 -  PP + 40 wt. % of  crumble rapeseed, No. 6 – 
PP + 40 wt. % of crumble beech wood  
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3.2 Effect of chemical treatment of lignocellulosic fillers on the acoustic properties of 
the composites 

Chemical treatment of lignocellulosic filler as mercerization and modification with 
anhydride is often necessary to improve the mechanical properties of the composite due to 
better adhesion between the hydrophilic lignocellulosic filler and the hydrophobic polymer 
matrix (Borysiak &  Garbarczyk, 2003; Borysiak & Doczekalska, 2005; Liu & Hu, 2008). 
Chemical treatment of the filler surface results in positive changes of the mechanical 
parameters of the composite as tensile strength, flexural strength and elongation at break 
(Bledzki et al., 2005; S.J. Kim et al., 2008; Mahlberg et al., 2001; Nachtigall et al., 2007; Yang et 
al., 2006). The interfacial region is the most vulnerable location to mechanical fracture. When 
subjected to the stress, it should show the ability to transmit the acoustic wave – induced 
tension from one phase to the other. Chemical treatment of the lignocellulosic filler is often 
necessary to get better the mechanical properties of the composite. Thus, the information 
about the influence of the modification on the acoustic properties is also very useful from 
the application point of view. In this chapter, the results of acoustic measurements for 
composites with crude and modified fillers are presented. 

Figs. 3 – 6 show the values of sound absorption coefficient  measured for the composite 
samples No. 7 – 14, specified in Table 1. All composite samples, crude and modified, are 
compared with the pure polypropylene. The effect of the addition of the lignocellulosic filler 
to the polypropylene matrix is predominant in the frequency range above 3000 Hz where 
one can observe the improvement in the sound absorption of the order of more than ten 
percentage. All the investigated composite samples show the resonance characteristics of 
sound absorption with the maximum in the frequency range from 4000 to 6000 Hz. This 
behaviour can be ascribed to the combination of elastic constants and densities of both 
materials which makes possible the comparatively big relative motion between matrix and 
filler according to the Biot theory. The elastic constants and densities of the filler material 
result from its chemical composition. Our previous investigations, described in chapter 2.1, 
performed on composites with flax, hemp, rapeseed and beech fillers, showed that the 
increased sound absorption in a narrow frequency range can be probably related to the 
relatively small content of the cellulose. Now, we can confirm this presumption. The 
lignocellulosic materials used in this experiment are characterized by lower contents of 
cellulose: beech – 42 wt. % (Nik–Azar et al., 1997), pine – 41 wt. % (Gosselink et al., 2004), 
rapeseed Kaszub – 38 wt. % (Paukszta, 2005, 2006) and rape Californium - 37 wt. % 
(Paukszta, 2006) in comparison with hemp and flax which contain above 70 wt. % of 
cellulose (Averous & Le Digabel, 2006).  

The effect of the modification of the fibre surface consists in the shift of the sound absorption 
maximum towards higher frequency range and is accompanied by the decrease of the sound 

absorption coefficient . The reduction of the  coefficient  is not large. It amounts  2.5 % in 
the case of composites with pine wood and rapeseed straw Californium. For the samples 

with beech wood filler the coefficient  remains unaffected after modification. The exception 
is the composite containing the rapeseed straw Kaszub as a filler that shows the decreasing 

in the sound absorption of 7%. The reduction of the  coefficient value at the frequency 
related to the  maximum of the sound absorption can be associated with the increase in the 
density of the composite after modification (Table 1) due to better adhesion between filler 
particles and polypropylene matrix. The fact implies that the specific acoustic impedance of 
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Fig. 3. Frequency dependences of sound absorption coefficient  for the samples: No. 1 – PP, 
No. 7 – PP + 20 wt. % of crude beech, No. 8 -  PP + 20 wt. % of beech modified with succinic 
anhydride  
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Fig. 4. Frequency dependences of sound absorption coefficient  for the samples: No. 1 – PP, 
No. 9 – PP + 20 wt. % of crude pine, No. 10 – PP + 20 wt. % of pine modified with succinic 
anhydride  
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Fig. 5. Frequency dependences of sound absorption coefficient  for the samples: No. 1 – PP, 
No. 11 – PP + 30 wt. % of crude rapeseed straw Kaszub, No. 12 -  PP + 30 wt. % of rapeseed 
straw Kaszub modified with acetic anhydride  
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Fig. 6. Frequency dependences of sound absorption coefficient  for the samples: No. 1 – PP, 
No. 13 – PP + 30 wt. % of crude rapeseed straw Californium pure polypropylene (No. 1) and 
polypropylene composites with 30 wt. % of crude rapeseed straw Californium, No. 14 – PP 
+ 30 wt. % of rapeseed straw Californium modified with acetic anhydride  
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the material, defined as the product of the density and the sound velocity (Lee & Chen, 
2001), is increased. In turn, the higher the acoustic impedance the more acoustic energy is 
reflected from the material surface and the less of it can be absorbed. Better adhesion 
between polymer matrix and lignocellulosic filler leads to the better ability to transmit the 
acoustic wave – induced tension from one phase to the other. The process of the 
transmission in the composites with the modified fillers can be more rapid in comparison to 
that observed in non-modified composites and it can follow with higher frequency being a 
reason of a shift of the sound absorption band of about 1000 Hz.  

4. Dielectric properties of the polypropylene reinforced with lignocellulosic 
materials  

4.1 Effect of reinforcement of polypropylene with lignocellulosic materials on the 
dielectric properties  

The dielectric properties of a material are determined by the polarizability of its molecules. 

There are three primary contributions to the electric polarization of a dielectrics: electronic, 

ionic and dipole reorientation – related (Uchino, 2000). The intensity with which each 

mechanism occurs depends on the frequency of applied electric field. The electronic 

polarization causes a displacement of the electrons with respect to the atomic nuclei and can 

follow alternating field with the frequencies up to 1012 – 1015 Hz. The ionic polarization relies 

on a displacement of the atomic nuclei relative to one another and responds up to 109 – 1012 

Hz. Both mentioned polarization mechanisms are related to the non-polar molecules. The 

third mechanism associated with the dipole reorientation is valid only in the case of polar 

molecules. It can follow with the frequency of alternating electric field up to 106 – 109 Hz. 

The dielectric permittivity ’ of a material represents the ratio of the capacitance of a plane 

condenser filled with the dielectric to that of the same condenser under vacuum and is to 

calculate from the expression: 

 
0

'
C d

S








, (7) 

where: C is the capacitance of the condenser with the dielectric, S stands for the area of the 

sample covered by the electrode, d relates to the thickness of the sample and 0 = 8.85·10-12 

F/m is the dielectric constant of the vacuum. The alternating current conductivity a.c. is 

described by the relationship: 

 . . 0 'a c tg        ,  (8) 

where  stands for the angular frequency. 

The frequency dependencies of the dielectric constant ’ measured at room temperature for 

the polypropylene and its composites with various lignocellulosic materials derived from 

hemp and flax are presented in Figs. 7 and 8. The effect of the reinforcement of the 

polypropylene with a lignocellulosic material consists in the increase of the dielectric 

permittivity ’ over the whole measurement frequency range. The effect is predominant at 

lower frequencies. Pure polypropylene is a non-polar hydrophobic material which shows  

only instantaneous ionic and electronic polarization. Its dielectric permittivity ’ holds 
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Fig. 7. Frequency dependences of dielectric permittivity ' for the samples: No. 1 – PP, No. 
15 - PP+25 wt. % of short hemp fibres, No. 16 -  PP + 25 wt. % of hemp shivers, No.3 – PP + 
40 wt. % of long hemp  
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Fig. 8. Frequency dependences of dielectric permittivity ' for the samples: No. 1 – PP, No. 
17 – PP + 25 wt. % of short flax fibres, No. 18. – PP + 25 wt. % of flax shivers, No. 4 -  PP + 40 
wt. % of long flax fibres 

www.intechopen.com



 
Acoustic and Dielectric Properties of Polypropylene-Lignocellulosic Materials Composites 

 

205 

nearly constant value in the whole frequency range with a slender increase bellow 103 Hz. The 
addition of a hydrophilic lignocellulosic material to the polypropylene entails the insertion of 
polar groups into the non-polar material giving the reason for rising the polarization related to 
the dipole reorientation. Moreover, the presence of the hydroxyl groups –OH in the cellulose, 
the hemicellulose and the lignin extends the moisture absorption due to the interaction of –OH 
groups and water molecules.  The overall polarization of the composite, being the sum of three 
contributions: electronic, ionic and dipole reorientation – related ones, exhibits the maximum 
values at low frequencies and decreases with increasing frequency. The same behaviour shows 

the dielectric permittivity of the composites ’. The value of the dielectric permittivity ’ 
increases with the content of the lignocellulosic material. In the higher frequency range, i.e. 

above 106 Hz, the value of the relative dielectric permittivity ’ tends to the constant value 
fixed by squared refractive index. 

Moreover, the values for composites with the same content (25 wt.%) of different 

lignocellulosic materials converge. The differences in the dielectric permittivity ’ values are 
most significant in the low frequency range, and they are observed also for the composites 
comprising the same content of lignocellulosic materials derived from different parts of 
hemp and flax. The composites containing the shivers derived from hemp as well as from 

flax (25 wt.%) exhibit lower ’ than the ones comprising short fibres (also 25 wt.%). The 
shivers are the lignified parts of the stems, separated from the fibres and they show lower 
capacity of moisture absorption. This fact can indicate a smaller number of polar groups and 
lower polarization related to dipole reorientation. 

Plots of the reciprocal of dielectric permittivity 1/’ versus volume fraction of lignocellulosic 
material derived from hemp and flax at the frequency of 1 MHz (Fig. 9) are linear for the 
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Fig. 9. Reciprocal dielectric permittivity 1/’ versus volume fraction of lignocellulosic 
material derived from hemp and flax (Markiewicz et al., 2009)  
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applied contents of filler. A number of numerical relations as Lichtenecker, Maxwell Garnet, 
Jayasundere, Poon-Shin equations or Effective Medium Theory were developed by 
researchers to predict the effective dielectric constant of the composites (Subodh et al., 2007). 
All the mentioned models differ at higher volume fraction of the filler and they can be 
replaced by the linear fit at lower filler content, when the permittivity contrast between 
matrix and filler is low, particularly. For our investigated samples with the volume fraction 
less than 0.4 the dependence of the reciprocal of the dielectric permittivity on the volume 
fraction can be approximated by the linear fit (Sareni et al., 1997). The obtained results are in 
agreement with those presented by Jacob M. at al. (Jacob, 2006) for sisal-oil palm hybrid 
biofibre reinforced natural rubber biocomposites. 

The reinforcement of the polypropylene with the lignocellulosic material results in the 
increase of ac conductivity (Figs. 10 and 11). The random distribution of the lignocellulosic 
fillers in the polypropylene matrix enables rearrangement of the fibres in a chain structure 
which ensures better carrier mobility in the presence of electric field. The frequency 
dependence of the electrical conductivity is described by the expression (Jonsher, 1997): 

 ( ) n   . (9) 

The exponent n is close to 0.5 for pure polypropylene and points to diffusive carrier 
transport. For the composites, n changes from ~ about 0.5 at the low frequencies to ~ 1 at the 
high frequencies. This fact proves the existence of diffusive as well as hopping carrier 
transport. In the lowest frequency range the composite samples show the frequency- 
independent behavior pointing to the ohmic conduction. This property makes them to be  
better antistatic material than pure propylene. 
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Fig. 10. Frequency dependences of ac conductivity ' for the samples: No. 1 – PP, No. 15 – 
PP + 25 wt. % of short hemp fibres, No. 16 – PP + 25 wt. % of hemp shivers, No. 3 - PP+40% 
of long hemp fibres  
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Fig. 11. Frequency dependences of ac conductivity ' for the samples: No. 1 – PP, No. 17 – 
PP + 25 wt, % of short flax fibres, No. 18 - PP+25 wt. % of flax shivers, No. 4 – PP + 40 wt. % 
of long flax fibres  
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Fig. 12. Temperature dependences of dielectric permittivity ’ obtained at frequencies 100 
kHz and 1 MHz for the samples: No. 1- polypropylene PP; No. 15 - PP + 25 wt.% of short 
hemp fibres; No. 16 – PP + 25 wt.% of hemp shivers; No. 3 – PP + 40 wt.% of long hemp 
fibres 
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Fig. 13. Temperature dependences of dielectric permittivity ’ obtained at frequencies 100 
kHz and 1 MHz for the samples: No. 1 - polypropylene PP; No. 17 - PP + 25 wt.% of short 
flax fibres; No. 18 – PP + 25 wt.% of flax shivers; No. 4 – PP + 40 wt.% of long flax fibres 

The temperature variations of the dielectric permittivity ’ investigated for the 
polypropylene as well as the composite samples with hemp and flax are presented in Figs. 
12 and 13. The value of ’ measured for polypropylene is nearly independent on the 

temperature up to the melting point at 438 K (Doh, 2005). The dielectric permittivity  ’  of 
the composites increases with the temperature up to the maximum associated with the 
traces of water, and then decreases. The position of the maximum is determined by the 
contents of  chemically bounded water which cannot be removed during the preparation. 
The maximum is shifted towards higher temperatures in the case of higher contents (Chand, 
2005). As follows from Figs. 12 and 13,  the technique of hydraulic pressing, applied for 
fabrication of composite samples with long fibers, implied the lowest content of water. In 
the vicinity of the melting point of the polypropylene, a rapid fall of the ’ value is visible. 
The dielectric permittivity  ’  decreases with the increase of the frequency, as is seen for two 

frequencies: 100 Hz and 1 MHz.  A weak dependency of dielectric permittivity ’ on the 
temperature was observed for the frequency of 1 MHz, particularly in the case of 
polypropylene composites with short fibres. This feature is the evidence that the composites 
can be recommended for application in the high frequency range because of the stable  
dielectric permittivity ’ value. 

The dielectric loss factors ” of the pure polypropylene and the composites containing the 
lignocellulosic materials derived from hemp and flax are presented in Figs. 14 and 15 as a 
function of the temperature for the frequency of 1000 Hz. Pure polypropylene is known to 
exhibit two characteristic features (Kotek et al., 2005): a glass relaxation peak around 263 K 
and a high – temperature (~323 K) shoulder associated with chain relaxation in the 
crystalline phase. These features cannot be detected by the Dielectric Relaxation 

www.intechopen.com



 
Acoustic and Dielectric Properties of Polypropylene-Lignocellulosic Materials Composites 

 

209 

10
-2

10
-1

10
0

 


wet

-relaxation

-relaxation

-relaxation
 No. 1

 No. 15

"

 

10
-2

10
-1

10
0


wet

-relaxation

-relaxation

 No. 1

 No. 16

"

-relaxation

 

150 200 250 300 350 400 450
10

-3

10
-2

10
-1

10
0

 -relaxation


wet

-relaxation

-relaxation

-relaxation

 No. 1

 No. 3

frequency [Hz]

"

 

Fig. 14. Temperature dependences of dielectric losses ” obtained at frequency 1000 Hz for 
the samples: No. 1- polypropylene PP; No. 15 - PP + 25 wt.% of short hemp fibres; No. 16 – 
PP + 25 wt.% of hemp shivers; No. 3 – PP + 40 wt.% of long hemp fibres 
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Fig. 15. Temperature dependences of dielectric losses ” obtained at frequency 1000 Hz for 
the samples: No. 1- polypropylene PP; No. 17 - PP + 25 wt.% of short flax fibres; No. 18 – PP 
+ 25 wt.% of flax shivers; No. 3 – PP + 40 wt.% of long flax fibres 
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Spectroscopy (DRS) method without special modification of the polymer structure or 
introducing polar groups in the structure because polypropylene has no appreciable molecular 
dipoles and is not dielectrically active. The non-polar polypropylene does not show any 
anomalies in the dielectric loss spectrum. However, the temperature dependences of the 

dielectric loss factors ” measured for the composites are strongly influenced by the 
contribution of the lignocellulosic materials. Both kinds of the filler modify the dielectric 
absorption spectrum in the same way. In the low temperature range (from about 200 to 270 K) 

one can observe the maxima of ” ascribed to the  - relaxation process in the cellulose which is 

the main component of each lignocellulosic material. The  - relaxation is interpreted as a local 
motion of chain segments via the glucosidic linkages (Einfeldt et al., 2001). Above room 
temperature (from about 300 to 400 K) one can notice high relaxation peaks. Based on the 
shape of  these peaks, one can deduce that two relaxation processes overlap in this 

temperature range: wet – the relaxation associated with the orientational motion of both 

cellulose and water (Baranov et al., 2003; Einfeldt et al., 2001) and - the relaxation ascribed to 
the motion of the end groups in branched polymers (Einfeldt et al, 2001) present in the 

lignocellulosic material (hemicellulose, pectin, lignin). Because the intensity of the - 
relaxation is significantly smaller than that of wet- relaxation (Einfeldt et al., 2001), one can 

state that in the polypropylene – lignocellulosic materials composites the wet- relaxation is 

disturbed by the - process. In the case of the composites with long fibres derived from flax as 
well as hemp, the increase in the dielectric losses was observed in the highest temperature 

range (above 420 K). The effect results from the electric conductivity and is called  - relaxation 
(Einfeldt et al., 2001). The losses due to the electric conductivity are ascribed to charge carrier 

hopping between localized sites in amorphous solids. The fact that the  - relaxation was 
observed only for the composites with long fibres confirms the conclusion from (Einfeldt et al., 
2001) that the activation energy for the carrier hopping increases when the amount of water is 

reduced. The intensity of wet – relaxation is proportional to the contents of water. The low 

intensity of wet – relaxation in the composites with long fibers is a reason for relatively high 

strength of  – relaxation in comparison with that observed for other investigated samples 

where the  – process is suppressed by the wet – relaxation and the position of high intensive 

wet – relaxation peak in higher temperature range masks the  - process. 

4.2 Effect of chemical treatment of lignocellulosic fillers on the dielectric properties of 
the composites 

The effect of chemical treatment is dominant in the low frequency range, i. e. from  10-2 Hz 
to 1 kHz. It can be opposite for various kinds of lignocellulosic fillers. Figs. 16 and 17 show 

the frequency dependences of dielectric permittivity ’ obtained at room temperature for the 
polypropylene composites containing crude, mercerized and modified lignocellulosic fillers 
derived from pine and beech wood as well as two kinds of rapeseed straw. The effect 
observed for the pine and beech wood (Fig. 16) consists in the increase of the dielectric 

permittivity ’  value. The modification with maleic anhydride causes greater increase than 
the mercerization. In the case of both kinds of rapeseed straw: Kaszub and Californium (Fig. 

17), the mercerization decreases the dielectric permittivity ’  value several times and the 

modification with maleic anhydride reduces ’  value to that measured for composites with 

crude pine and crude beech. One should take into account the location of the wet - relaxation 
in the vicinity of room temperature to explain the opposite influence of chemical treatment 
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Fig. 16. Frequency dependences of dielectric permittivity ’ obtained for the samples: No. 19 
– PP + 30 wt. % of crude beech; No. 20 – PP + 30 wt. % of mercerized beech; No. 21 – PP + 30 
wt. % of beech modified with maleic anhydride; No. 22 – PP + 30 wt. % of crude pine; No. 23 
– PP + 30 wt. % of mercerized pine; No. 24 – PP + wt. 30% of pine modified with maleic 
anhydride 
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Fig. 17. Frequency dependences of dielectric permittivity ’ obtained for the samples: No. 11 
– PP + 30 wt. % of crude rapeseed straw Kaszub; No. 25 – PP + 30 wt. % of mercerized 
rapeseed straw Kaszub; No. 12 – PP + 30 wt. % of rapeseed straw Kaszub modified with 
acetic anhydride; No. 13 – PP + 30 wt. % of crude rapeseed straw Californium; No. 26 – PP + 
30 wt. % of mercerized rapeseed straw Californium; No. 14 – PP + 30 wt. % of rapeseed 
straw Californium modified with acetic anhydride 
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on the dielectric permittivity ’  value at low frequencies. The effect is associated with the 
ability of moisture absorption. The swollen structure of crude rapeseed straw facilitates the 

moisture absorption and the ’ value for this material is the biggest one. The mercerization 
and the modification with acetic anhydride make the structure more rigid and the moisture 
absorption is limited. However, in the case of beech and pine the crystalline structure of the 
cellulose confined to the fibres gets be swelled just after chemical treatment. 

5. Conclusion  

The investigated composite materials based on polypropylene matrix and lignocellulosic 
fillers can be recommended for application in building and automotive industry because of 
their good sound absorptive power as well as in packaging electronics due to their dielectric 
properties. Addition of lignocellulosic materials to the pure polypropylene increases the 
sound absorption coefficient by about 20% in the frequency range above 3000 Hz. The 
frequency dependence of the absorption coefficient can be shaped by the proper choice of 
the lignocellulosic filler. The shift of the sound absorption band due to chemical treatment of 
the lignocellulosic fibres seems to be suitable for manufacturing the composites with 
extended sound absorption frequency range as the effect of the adaptation of mixed filler 
containing the treated and untreated lignocellulosic material. The increased dielectric 
permittivity of the composites, in comparison with the polypropylene, is preferable in the 
application in the field of packaging industry. The polypropylene-lignocellulosic materials 
composites assure the thermal stability of the dielectric permittivity above 1 MHz and better 
antistatic properties than pure polypropylene.  
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