41 research outputs found

    Targeting of the mitochondrion by dinuclear thiolato-bridged arene ruthenium complexes in cancer cells and in the apicomplexan parasite Neospora caninum

    Get PDF
    A library of 18 dinuclear-thiolato bridged arene ruthenium complexes, some of which with demonstrated activity against cancer cells, was screened for activity against a transgenic Neospora caninum strain that constitutively expresses beta-galactosidase. Initial assessments were done at concentrations of 2500, 250, 25 and 2.5 nM, and 5 compounds were further evaluated with regard to their half maximal proliferation-inhibiting concentration (IC50). Among those, [(η6-p-MeC6H4Pri)2Ru2(μ2-SC6H4-p-CH3)3]Cl (1), [(η6-p-MeC6H4Pri)2Ru2(μ2-SC6H4-p-But)3]Cl (2) and [(η6-p-MeC6H4Pri)2Ru2(μ2-SCH2C6H4-p-But)2(μ2-SC6H4-p-OH)]BF4 (9) inhibited N. caninum proliferation with low C50 values of 15, 5 and 1 nM, respectively, while [(η6-p-MeC6H4Pri)2Ru2(μ2-SC6H4-p-OH)3]Cl (3) and [(η6-p-MeC6H4Pri)2Ru2(μ2-SC6H4-p-mco)3]Cl (5, mco = 4-methylcoumarinyl) were less active (IC50 = 280 and 108 nM, respectively). These compounds did not affect human foreskin fibroblast (HFF) host cells at dosages of 5 μM and above, but impaired proliferation of the human ovarian carcinoma cell line A2780 (IC50 values of 130 nM (1), 30 nM (2), 530 nM (3), 7730 nM (5), 130 nM (9)). A2780 cancer cells were treated with complexes 1, 2, and 5, and biodistribution analysis using inductively coupled plasma mass spectrometry (ICP-MS) showed that most of the drugs accumulated in the mitochondrial fractions. Transmission electron microscopy showed that the parasite mitochondrion is the primary target also in N. caninum tachyzoites, but these compounds, when applied at 200 nM for 15 days in vitro, did not act parasiticidal. Complexes 1, 2 and 9 applied orally at 2 and 10 mg kg−1 day−1 during 5 days in a neosporosis mouse model did not reduce parasite load and did not limit parasite dissemination to the central nervous system. In accordance with these results, ICP-MS carried out on different organs of mice orally administrated with complexes 1 and 9, demonstrated that the drugs were readily absorbed, and after 3 and 48 h, were mainly detected in liver and kidney, but were largely absent from the brain. Thus, dinuclear thiolato-bridged arene ruthenium complexes exhibit interesting activities against N. caninum in vitro, but further modifications of these promising molecules are required to improve their bioavailability and pharmacokinetic properties in order to exert a pronounced and selective effect against N. caninum in vivo

    Influenza-A Viruses in Ducks in Northwestern Minnesota: Fine Scale Spatial and Temporal Variation in Prevalence and Subtype Diversity

    Get PDF
    Waterfowl from northwestern Minnesota were sampled by cloacal swabbing for Avian Influenza Virus (AIV) from July – October in 2007 and 2008. AIV was detected in 222 (9.1%) of 2,441 ducks in 2007 and in 438 (17.9%) of 2,452 ducks in 2008. Prevalence of AIV peaked in late summer. We detected 27 AIV subtypes during 2007 and 31 during 2008. Ten hemagglutinin (HA) subtypes were detected each year (i.e., H1, 3–8, and 10–12 during 2007; H1-8, 10 and 11 during 2008). All neuraminidase (NA) subtypes were detected during each year of the study. Subtype diversity varied between years and increased with prevalence into September. Predominant subtypes during 2007 (comprising ≥5% of subtype diversity) included H1N1, H3N6, H3N8, H4N6, H7N3, H10N7, and H11N9. Predominant subtypes during 2008 included H3N6, H3N8, H4N6, H4N8, H6N1, and H10N7. Additionally, within each HA subtype, the same predominant HA/NA subtype combinations were detected each year and included H1N1, H3N8, H4N6, H5N2, H6N1, H7N3, H8N4, H10N7, and H11N9. The H2N3 and H12N5 viruses also predominated within the H2 and H12 subtypes, respectively, but only were detected during a single year (H2 and H12 viruses were not detected during 2007 and 2008, respectively). Mallards were the predominant species sampled (63.7% of the total), and 531 AIV were isolated from this species (80.5% of the total isolates). Mallard data collected during both years adequately described the observed temporal and spatial prevalence from the total sample and also adequately represented subtype diversity. Juvenile mallards also were adequate in describing the temporal and spatial prevalence of AIV as well as subtype diversity

    Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    Get PDF
    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations

    Crystal structure of bis[μ-(4-methoxyphenyl)methanethiolato-κ2S:S]bis[chlorido(η6-1-isopropyl-4-methylbenzene)ruthenium(II)] chloroform disolvate

    No full text
    The molecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pri)2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related RuII atoms are bridged by two 4-methoxy-α-toluenethiolato [(4-methoxyphenyl)methanethiolato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the RuII atom. In the crystal, the CH moiety of the chloroform molecule interacts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent interacts more weakly with the methyl group of the bridging 4-methoxy-α-toluenethiolato unit. This assembly leads to the formation of supramolecular chains extending parallel to [021]

    Chiral or not chiral? A case study of the hexanuclear metalloprisms [Cp(6)M(6)(micro(3)-tpt-kappaN)(2)(micro-C2O4-kappaO)(3)]6+ (M = Rh, Ir, tpt = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine)

    No full text
    Cationic hexarhodium and hexairidium complexes with a trigonal prismatic architecture have been synthesised in good yield by self-assembly of the dinuclear oxalato-bridged complexes [Cp(2)M(2)(micro-C(2)O(4)-kappaO)Cl(2)] (M = Rh; 1: Ir; 2) with 2,4,6-tri(pyridine-4-yl)-1,3,5-triazine (tpt) in the presence of AgO(3)SCF(3). The trigonal prismatic cations [Cp(6)Rh(6)(micro(3)-tpt-kappaN)(2)(micro-C(2)O(4)-kappaO)(3)](6+) (3) and [Cp(6)Ir(6)(micro(3)-tpt-kappaN)(2)(micro-C(2)O(4)-kappaO)(3)](6+) (4) have been isolated as their triflate salts. The single-crystal X-ray structure analysis of [3][O(3)SCF(3)](6) shows two enantiomers in the racemic crystal (space group C2/c), the chirality being due to a twist of the two tpt units. By contrast, the single-crystal X-ray structure analysis of [4][O(3)SCF(3)](6) shows a perfectly eclipsed conformation of the tpt units, so that is not chiral in the crystal state (space group Fd3[combining macron]c). However, in solution, enantiodifferentiation in the presence of the chiral anion Delta-BINPHAT is observed by (1)H NMR spectrometry not only in the case of 3, but also in the case of 4. This suggests that the iridium derivative 4, which is not chiral in the solid state, adopts chiral conformations in solution

    Self-assembled hexanuclear arene ruthenium metallo-prisms with unexpected double helical chirality

    No full text
    Self-assembly of 2,4,6-tripyridyl-1,3,5-triazine (tpt) subunits with arene ruthenium building blocks and oxalato bridges affords cationic triangular metallo-prisms of the type [Ru6(arene)6(tpt)2(C2O4)3]6+ (arene = C6Me6 and p-Pr(i)C6H4Me); the unexpected double helical chirality of the metallo-prisms observed in the solid state persists in solution giving rise to two different stereodynamic processes as demonstrated by NMR enantiodifferentiation experiments
    corecore