3 research outputs found
Table_2_Seasonal Variation in Transport of Zooplankton Into the Arctic Basin Through the Atlantic Gateway, Fram Strait.pdf
<p>The largest contribution of oceanic heat to the Arctic Ocean is the warm Atlantic Water (AW) inflow through the deep Fram Strait. The AW current also carries Atlantic plankton into the Arctic Basin and this inflow of zooplankton biomass through the Atlantic-Arctic gateway far exceeds the inflow through the shallow Pacific-Arctic gateway. However, because this transport has not yet been adequately quantified based on observational data, the present contribution is poorly defined, and future changes in Arctic zooplankton communities are difficult to project and observe. Our objective was to quantify the inflow of zooplankton biomass through the Fram Strait during different seasons, including winter. We collected data with high spatial resolution covering hydrography (CTD), currents (ADCP and LADCP) and zooplankton distributions (LOPC and MultiNet) from surface to 1,000 m depth along two transects crossing the AW inflow during three cruises in January, May and August 2014. Long-term variations (1997–2016) in the AW inflow were analyzed based on moored current meters. Water transport across the inflow region was of the same order of magnitude during all months (January 2.2 Sv, May 1.9 Sv, August 1.7 Sv). We found a higher variability in zooplankton transport between the months (January 51 kg C s<sup>−1</sup>, May 34 kg C s<sup>−1</sup>, August 50 kg C s<sup>−1</sup>), related to seasonal changes in the vertical distribution of zooplankton. However, high abundances of carbon-rich copepods were observed in the AW inflow during all months. Surface patches with high abundances of C. finmarchicus, Microcalanus spp., Pseudocalanus spp., and Oithona similis clearly contributed to the advected biomass, also in winter. The data reveal that the phenology of species is important for the amount of advected biomass, and that the advective input of zooplankton carbon into the Arctic Basin is important during all seasons. The advective zooplankton input might be especially important for mesopelagic planktivorous predators that were recently observed in the region, particularly during winter. The inflow of C. finmarchicus with AW was estimated to be in the order of 500,000 metric tons C y<sup>−1</sup>, which compares well to modeled estimates.</p
Table_1_Seasonal Variation in Transport of Zooplankton Into the Arctic Basin Through the Atlantic Gateway, Fram Strait.pdf
<p>The largest contribution of oceanic heat to the Arctic Ocean is the warm Atlantic Water (AW) inflow through the deep Fram Strait. The AW current also carries Atlantic plankton into the Arctic Basin and this inflow of zooplankton biomass through the Atlantic-Arctic gateway far exceeds the inflow through the shallow Pacific-Arctic gateway. However, because this transport has not yet been adequately quantified based on observational data, the present contribution is poorly defined, and future changes in Arctic zooplankton communities are difficult to project and observe. Our objective was to quantify the inflow of zooplankton biomass through the Fram Strait during different seasons, including winter. We collected data with high spatial resolution covering hydrography (CTD), currents (ADCP and LADCP) and zooplankton distributions (LOPC and MultiNet) from surface to 1,000 m depth along two transects crossing the AW inflow during three cruises in January, May and August 2014. Long-term variations (1997–2016) in the AW inflow were analyzed based on moored current meters. Water transport across the inflow region was of the same order of magnitude during all months (January 2.2 Sv, May 1.9 Sv, August 1.7 Sv). We found a higher variability in zooplankton transport between the months (January 51 kg C s<sup>−1</sup>, May 34 kg C s<sup>−1</sup>, August 50 kg C s<sup>−1</sup>), related to seasonal changes in the vertical distribution of zooplankton. However, high abundances of carbon-rich copepods were observed in the AW inflow during all months. Surface patches with high abundances of C. finmarchicus, Microcalanus spp., Pseudocalanus spp., and Oithona similis clearly contributed to the advected biomass, also in winter. The data reveal that the phenology of species is important for the amount of advected biomass, and that the advective input of zooplankton carbon into the Arctic Basin is important during all seasons. The advective zooplankton input might be especially important for mesopelagic planktivorous predators that were recently observed in the region, particularly during winter. The inflow of C. finmarchicus with AW was estimated to be in the order of 500,000 metric tons C y<sup>−1</sup>, which compares well to modeled estimates.</p
DataSheet_1_Surface chlorophyll anomalies induced by mesoscale eddy-wind interactions in the northern Norwegian Sea.docx
The substantial productivity of the northern Norwegian Sea is closely related to its strong mesoscale eddy activity, but how eddies affect phytoplankton biomass levels in the upper ocean through horizontal and vertical transport-mixing has not been well quantified. To assess mesoscale eddy induced ocean surface chlorophyll-a concentration (CHL) anomalies and modulation of eddy-wind interactions in the region, we constructed composite averaged CHL and wind anomalies from 3,841 snapshots of anticyclonic eddies (ACEs) and 2,727 snapshots of cyclonic eddies (CEs) over the period 2000-2020 using satellite altimetry, scatterometry, and ocean color products. Results indicate that eddy pumping induces negative (positive) CHL anomalies within ACEs (CEs), while Ekman pumping caused by wind-eddy interactions induces positive (negative) CHL anomalies within ACEs (CEs). Eddy-induced Ekman upwelling plays a key role in the unusual positive CHL anomalies within the ACEs and results in the vertical transport of nutrients that stimulates phytoplankton growth and elevated productivity of the region. Seasonal shoaling of the mixed layer depth (MLD) results in greater irradiance levels available for phytoplankton growth, thereby promoting spring blooms, which in combination with strong eddy activity leads to large CHL anomalies in May and June. The combined processes of wind-eddy interactions and seasonal shallowing of MLD play a key role in generating surface CHL anomalies and is a major factor in the regulation of phytoplankton biomass in the northern Norwegian Sea.</p