68 research outputs found

    Wave Dragon:prototype wave power production

    Get PDF

    Individual addressing and state readout of trapped ions utilizing rf- micromotion

    Get PDF
    A new scheme for the individual addressing of ions in a trap is described that does not rely on light beams tightly focused onto only one ion. The scheme utilizes ion micromotion that may be induced in a linear trap by dc offset potentials. Thus coupling an individual ion to the globally applied light fields corresponds to a mere switching of voltages on a suitable set of compensation electrodes. The proposed scheme is especially suitable for miniaturized rf (Paul) traps with typical dimensions of about 20-40 microns.Comment: 3 pages, 5 figure

    Trapped-Ion Quantum Logic Utilizing Position-Dependent ac Stark Shifts

    Full text link
    We present a scheme utilizing position-dependent ac Stark shifts for doing quantum logic with trapped ions. By a proper choice of direction, position and size, as well as power and frequency of a far-off-resonant Gaussian laser beam, specific ac Stark shifts can be assigned to the individual ions, making them distinguishable in frequency-space. In contrast to previous all-optical based quantum gates with trapped ions, the present scheme enables individual addressing of single ions and selective addressing of any pair of ions for two-ion quantum gates, without using tightly focused laser beams. Furthermore, the decoherence rate due to off-resonant excitations can be made negligible as compared with other sources of decoherence.Comment: 5 pages, 4 figures. Submitted to Physical Review Letter

    Quantum computing with four-particle decoherence-free states in ion trap

    Get PDF
    Quantum computing gates are proposed to apply on trapped ions in decoherence-free states. As phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum computing based on this model would be perfect. Possible application of our scheme in future ion-trap quantum computer is discussed.Comment: 10 pages, no figures. Comments are welcom

    Preparation of decoherence-free, subradiant states in a cavity

    Get PDF
    The cause of decoherence in a quantum system can be traced back to the interaction with the environment. As it has been pointed out first by Dicke, in a system of N two-level atoms where each of the atoms is individually dipole coupled to the environment, there are collective, subradiant states, that have no dipole coupling to photon modes, and therefore they are expected to decay slower. This property also implies that these type of states, which form an N-1 dimensional subspace of the atomic subsytem, also decohere slower. We propose a scheme which will create such states. First the two-level atoms are placed in a strongly detuned cavity and one of the atoms, called the control atom is excited. The time evolution of the coupled atom-cavity system leads to an appropriately entangled state of the atoms. By applying subsequent laser pulses at a well defined time instant, it is possible to drive the atomic state into the subradiant, i. e., decoherence free subspace. Up to a certain average number of the photons, the result is independent of the state of the cavity. The analysis of the conditions shows that this scheme is feasible with present day techniques achieved in atom cavity interaction experiments.Comment: 5 page

    Grover search with pairs of trapped ions

    Full text link
    The desired interference required for quantum computing may be modified by the wave function oscillations for the implementation of quantum algorithms[Phys.Rev.Lett.84(2000)1615]. To diminish such detrimental effect, we propose a scheme with trapped ion-pairs being qubits and apply the scheme to the Grover search. It can be found that our scheme can not only carry out a full Grover search, but also meet the requirement for the scalable hot-ion quantum computing. Moreover, the ion-pair qubits in our scheme are more robust against the decoherence and the dissipation caused by the environment than single-particle qubits proposed before.Comment: RevTe

    Quantum phase gate with a selective interaction

    Get PDF
    We present a proposal for implementing quantum phase gates using selective interactions. We analize selectivity and the possibility to implement these gates in two particular systems, namely, trapped ions and Cavity QED.Comment: Four pages of TEX file and two EPS figures. Submitted for publicatio

    Quantum Computing with Trapped Ion Hyperfine Qubits

    Full text link
    We discuss the basic aspects of quantum information processing with trapped ions, including the principles of ion trapping, preparation and detection of hyperfine qubits, single-qubit operations and multi-qubit entanglement protocols. Recent experimental advances and future research directions are outlined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45527/1/11128_2004_Article_489417.pd
    • …
    corecore