2,714 research outputs found

    HortiBot: A System Design of a Robotic Tool Carrier for High-tech Plant Nursing

    Get PDF
    Danish organic outdoor gardeners today use 50-300 hours per hectare for manual weeding. Through automatic controlling of an existing commercial machine this often heavy and costconsuming weeding will be eliminated. At the same time, a fully-automatic registration of field activities will contribute to the efficient implementation of EU directive 178/2002 concerning traceability in the primary production and thereby enhance the food-safety in the production chain. A radio controlled slope mower is equipped with a new robotic accessory kit. This transforms it into a tool carrier (HortiBot) for high-tech plant nursing for e.g. organic grown vegetables. The HortiBot is capable of passing over several parcels with visible rows autonomously based on a new commercial row detection system from Eco-Dan a/s, Denmark. This paper presents the solutions chosen for the HortiBot with regard to hardware, mechanicalelectrical interfaces and software. Further, the principles from a Quality Function Deployment (QFD) analysis was used to carry out the solicitation, evaluation and selection of most qualified design parameters and specifications attained to a horticultural robotic tool carrier. The QFD analysis provided a specific measure to evaluate each selected parameter in terms of satisfying user requirements and operational performance aspects. Based on a combination of importance rating and competitive priority ratings important user requirements include easy adaptation to field conditions in terms of row distance and parcel size, profitability, minimum crop damage during operation, and reliability. Lesser importance was attributed to affection value, attractive look, the possibility of out of season usage, and the use of renewable energy

    Impurity state in Haldane gap for S=1 Heisenberg antiferromagnetic chain with bond doping

    Full text link
    Using a new impurity density matrix renormalization group scheme, we establish a reliable picture of how the low lying energy levels of a S=1S=1 Heisenberg antiferromagnetic chain change {\it quantitatively} upon bond doping. A new impurity state gradually occurs in the Haldane gap as J′<JJ' < J, while it appears only if J′/J>γcJ'/J>\gamma_c with 1/γc=0.7081/\gamma_c=0.708 as J′>JJ'>J. The system is non-perturbative as 1≤J′/J≤γc1\leq J'/J\leq\gamma_c. This explains the appearance of a new state in the Haldane gap in a recent experiment on Y2−x_{2-x}Cax_xBaNiO5_5 [J.F. DiTusa, et al., Phys. Rev. Lett. 73 1857(1994)].Comment: 4 pages of uuencoded gzip'd postscrip

    Universal Behavior of One-Dimensional Gapped Antiferromagnets in Staggered Magnetic Field

    Full text link
    We study the properties of one-dimensional gapped Heisenberg antiferromagnets in the presence of an arbitrary strong staggered magnetic field. For these systems we predict a universal form for the staggered magnetization curve. This function, as well as the effect the staggered field has on the energy gaps in longitudinal and transversal excitation spectra, are determined from the universal form of the effective potential in O(3)-symmetric 1+1--dimensional field theory. Our theoretical findings are in excellent agreement with recent neutron scattering data on R_2 Ba Ni O_5 (R = magnetic rare earth) linear-chain mixed spin antiferromagnets.Comment: 4 pages, 2 figure

    Kohlenstoffbildung auf Nickel und Nickel-Kupfer-Legierungskatalysatoren

    Get PDF
    Equilibrium, kinetic and morphological studies of carbon formation in CH4+H2, CO, and CO+H2 gases on silica supported nickel and nickel-copper catalysts are reviewed. The equilibrium deviates in all cases from graphite equilibrium and more so in CO+CO2 than in CH4+H2. A kinetic model based on information from surface science results with chemisorption of CH4 and possibly also the first dehydrogenation step as rate controlling describes carbon formation on nickel catalyst in CH4+H2 well. The kinetics of carbon formation in CO and CO+H2 gases are in agreement with CO disproportionation as rate determining step. The presence of hydrogen influences strongly the chemisorption of CO. Carbon filaments are formed when hydrogen is present in the gas while encapsulating carbon dominates in pure CO. Small amounts of Cu alloying promotes while larger amounts (Cu : Ni ≥ 0.1) inhibits carbon formation and changes the morphology of the filaments ("octopus" carbon formation). Adsorption induced nickel segregation changes the kinetics of the alloy catalysts at high carbon activities. Modifications suggested in some very recent papers on the basis of new results are also briefly discussed.Center for Surface Reactivity

    Finite size spectrum, magnon interactions and magnetization of S=1 Heisenberg spin chains

    Full text link
    We report our density matrix renormalization-group and analytical work on S=1 antiferromagnetic Heisenberg spin chains. We study the finite size behavior within the framework of the non-linear sigma model. We study the effect of magnon-magnon interactions on the finite size spectrum and on the magnetization curve close to the critical magnetic field, determine the magnon scattering length and compare it to the prediction from the non-linear σ\sigma model.Comment: 28 pages, 8 figures, made substantial improvement

    Quantum Impurity Entanglement

    Full text link
    Entanglement in J_1-J_2, S=1/2 quantum spin chains with an impurity is studied using analytic methods as well as large scale numerical density matrix renormalization group methods. The entanglement is investigated in terms of the von Neumann entropy, S=-Tr rho_A log rho_A, for a sub-system A of size r of the chain. The impurity contribution to the uniform part of the entanglement entropy, S_{imp}, is defined and analyzed in detail in both the gapless, J_2 <= J_2^c, as well as the dimerized phase, J_2>J_2^c, of the model. This quantum impurity model is in the universality class of the single channel Kondo model and it is shown that in a quite universal way the presence of the impurity in the gapless phase, J_2 <= J_2^c, gives rise to a large length scale, xi_K, associated with the screening of the impurity, the size of the Kondo screening cloud. The universality of Kondo physics then implies scaling of the form S_{imp}(r/xi_K,r/R) for a system of size R. Numerical results are presented clearly demonstrating this scaling. At the critical point, J_2^c, an analytic Fermi liquid picture is developed and analytic results are obtained both at T=0 and T>0. In the dimerized phase an appealing picure of the entanglement is developed in terms of a thin soliton (TS) ansatz and the notions of impurity valence bonds (IVB) and single particle entanglement (SPE) are introduced. The TS-ansatz permits a variational calculation of the complete entanglement in the dimerized phase that appears to be exact in the thermodynamic limit at the Majumdar-Ghosh point, J_2=J_1/2, and surprisingly precise even close to the critical point J_2^c. In appendices the relation between the finite temperature entanglement entropy, S(T), and the thermal entropy, S_{th}(T), is discussed and and calculated at the MG-point using the TS-ansatz.Comment: 62 pages, 27 figures, JSTAT macro

    Thermodynamic limit of the density matrix renormalization for the spin-1 Heisenberg chain

    Full text link
    The density matrix renormalization group (``DMRG'') discovered by White has shown to be a powerful method to understand the properties of many one dimensional quantum systems. In the case where renormalization eventually converges to a fixed point we show that quantum states in the thermodynamic limit with periodic boundary conditions can be simply represented by a special type of product ground state with a natural description of Bloch states of elementary excitations that are spin-1 solitons. We then observe that these states can be rederived through a simple variational ansatz making no reference to a renormalization construction. The method is tested on the spin-1 Heisenberg model.Comment: 13 pages uuencoded compressed postscript including figure

    Childhood body mass index and height and risk of histologic subtypes of endometrial cancer

    Get PDF
    BACKGROUND: Endometrial cancer risk factors include adult obesity and taller stature, but the influence of size earlier in life is incompletely understood. We examined whether childhood body mass index (BMI; kg m(−2)) and height were associated with histologic subtypes of endometrial cancer. METHODS: From the Copenhagen School Health Records Register, 155 505 girls born 1930–1989 with measured weights and heights from 7 to 13 years were linked to health registers. BMI and height were transformed to age-specific z-scores. Hazard ratios (HRs) and 95% confidence intervals were estimated by Cox regressions. RESULTS: A total of 1020 endometrial cancers were recorded. BMI was non-linearly associated with all endometrial cancers, oestrogen-dependent cancers and the subtype of endometrioid adenocarcinomas; associations were statistically significant and positive above a z-score=0 and non-significant below zero. Compared with a 7-year-old girl with a BMI z-score=0, an equally tall girl who was 3.6 kg heavier (BMI z-score=1.5) had a hazard ratio=1.53 (95% confidence interval: 1.29–1.82) for endometrioid adenocarcinoma. BMI was not associated with non-oestrogen-dependent cancers, except at the oldest childhood ages. Height at all ages was statistically significant and positively associated with all endometrial cancers, except non-oestrogen-dependent cancers. At 7 years, per ~5.2 cm (1 z-score), the risk of endometrioid adenocarcinoma was 1.18 (95% confidence interval: 1.09–1.28). Among non-users of unopposed oestrogens, associations between BMI and endometrioid adenocarcinoma strengthened, but no effects on height associations were observed. CONCLUSIONS: Endometrial carcinogenesis is linked to early-life body size, suggesting that childhood BMI and height may be useful indicators for the risk of later development of endometrial cancer and might aid in the early prevention of obesity-related endometrial cancers

    The Ground State Energy of Heavy Atoms According to Brown and Ravenhall: Absence of Relativistic Effects in Leading Order

    Full text link
    It is shown that the ground state energy of heavy atoms is, to leading order, given by the non-relativistic Thomas-Fermi energy. The proof is based on the relativistic Hamiltonian of Brown and Ravenhall which is derived from quantum electrodynamics yielding energy levels correctly up to order α2\alpha^2Ry
    • …
    corecore