6,210 research outputs found

    Effective operator formalism for open quantum systems

    Full text link
    We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method with the hitherto existing concepts for effective interactions and present physical examples for the application of our formalism, including dissipative state preparation by engineered decay processes.Comment: 11 pages, 6 figure

    Stability and structure of two coupled boson systems in an external field

    Full text link
    The lowest adiabatic potential expressed in hyperspherical coordinates is estimated for two boson systems in an external harmonic trap. Corresponding conditions for stability are investigated and the related structures are extracted for zero-range interactions. Strong repulsion between non-identical particles leads to two new features, respectively when identical particles attract or repel each other. For repulsion new stable structures arise with displaced center of masses. For attraction the mean-field stability region is restricted due to motion of the center of masses

    The Generic, Incommensurate Transition in the two-dimensional Boson Hubbard Model

    Full text link
    The generic transition in the boson Hubbard model, occurring at an incommensurate chemical potential, is studied in the link-current representation using the recently developed directed geometrical worm algorithm. We find clear evidence for a multi-peak structure in the energy distribution for finite lattices, usually indicative of a first order phase transition. However, this multi-peak structure is shown to disappear in the thermodynamic limit revealing that the true phase transition is second order. These findings cast doubts over the conclusion drawn in a number of previous works considering the relevance of disorder at this transition.Comment: 13 pages, 10 figure

    Effective Hamiltonian Theory and Its Applications in Quantum Information

    Full text link
    This paper presents a useful compact formula for deriving an effective Hamiltonian describing the time-averaged dynamics of detuned quantum systems. The formalism also works for ensemble-averaged dynamics of stochastic systems. To illustrate the technique we give examples involving Raman processes, Bloch-Siegert shifts and Quantum Logic Gates.Comment: 5 pages, 3 figures, to be published in Canadian Journal of Physic

    Bogoliubov theory of entanglement in a Bose-Einstein condensate

    Full text link
    We consider a Bose-Einstein condensate which is illuminated by a short resonant light pulse that coherently couples two internal states of the atoms. We show that the subsequent time evolution prepares the atoms in an interesting entangled state called a spin squeezed state. This evolution is analysed in detail by developing a Bogoliubov theory which describes the entanglement of the atoms. Our calculation is a consistent expansion in 1/N1/\sqrt{N}, where NN is the number of particles in the condensate, and our theory predict that it is possible to produce spin squeezing by at least a factor of 1/N1/\sqrt{N}. Within the Bogoliubov approximation this result is independent of temperature.Comment: 14 pages, including 5 figures, minor changes in the presentatio

    Signatures of the superfluid to Mott insulator transition in equilibrium and in dynamical ramps

    Get PDF
    We investigate the equilibrium and dynamical properties of the Bose-Hubbard model and the related particle-hole symmetric spin-1 model in the vicinity of the superfluid to Mott insulator quantum phase transition. We employ the following methods: exact-diagonalization, mean field (Gutzwiller), cluster mean-field, and mean-field plus Gaussian fluctuations. In the first part of the paper we benchmark the four methods by analyzing the equilibrium problem and give numerical estimates for observables such as the density of double occupancies and their correlation function. In the second part, we study parametric ramps from the superfluid to the Mott insulator and map out the crossover from the regime of fast ramps, which is dominated by local physics, to the regime of slow ramps with a characteristic universal power law scaling, which is dominated by long wavelength excitations. We calculate values of several relevant physical observables, characteristic time scales, and an optimal protocol needed for observing universal scaling.Comment: 23 pages, 13 figure

    Doped coupled frustrated spin-1/2 chains with four-spin exchange

    Full text link
    The role of various magnetic inter-chain couplings is investigated by numerical methods in doped frustrated quantum spin chains. A non-magnetic dopant introduced in a gapped spin chain releases a free spin-1/2 soliton. The formation of a local magnetic moment is analyzed in term of soliton confinement. A four-spin coupling which might originate from cyclic exchange is shown to produce such a confinement in contrast to transverse magnetic exchange. Dopants on different chains experience an effective space-extended non-frustrating pairwise spin interaction.Comment: Few modifications and references added. Submitted to PR

    Structure of boson systems beyond the mean-field

    Full text link
    We investigate systems of identical bosons with the focus on two-body correlations. We use the hyperspherical adiabatic method and a decomposition of the wave function in two-body amplitudes. An analytic parametrization is used for the adiabatic effective radial potential. We discuss the structure of a condensate for arbitrary scattering length. Stability and time scales for various decay processes are estimated. The previously predicted Efimov-like states are found to be very narrow. We discuss the validity conditions and formal connections between the zero- and finite-range mean-field approximations, Faddeev-Yakubovskii formulation, Jastrow ansatz, and the present method. We compare numerical results from present work with mean-field calculations and discuss qualitatively the connection with measurements.Comment: 26 pages, 6 figures, submitted to J. Phys. B. Ver. 2 is 28 pages with modified figures and discussion

    Entanglement and Extreme Spin Squeezing

    Get PDF
    For any mean value of a cartesian component of a spin vector we identify the smallest possible uncertainty in any of the orthogonal components. The corresponding states are optimal for spectroscopy and atomic clocks. We show that the results for different spin J can be used to identify entanglement and to quantity the depth of entanglement in systems with many particles. With the procedure developed in this letter, collective spin measurements on an ensemble of particles can be used as an experimental proof of multi-particle entanglementComment: 4 pages, 2 figures, minor changes in the presentatio
    • …
    corecore