206 research outputs found

    De gamle Kort i vore Herregaardsarkiver.

    Get PDF
    De gamle Kort i vore Herregaardsarkiver

    Et Vidnesbyrd fra Egnen ved Korinth.

    Get PDF
    Et Vidnesbyrd fra Egnen ved Korinth

    High recovery of cell-free methylated DNA based on a rapid bisulfite-treatment protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detection of cell-free methylated DNA in plasma is a promising tool for tumour diagnosis and monitoring. Due to the very low amounts of cell-free DNA in plasma, analytical sensitivity is of utmost importance. The vast majority of currently available methods for analysing DNA methylation are based on bisulfite-mediated deamination of cytosine. Cytosine is rapidly converted to uracil during bisulfite treatment, whereas 5-methylcytosine is only slowly converted. Hence, bisulfite treatment converts an epigenetic modification into a difference in sequence, amenable to analysis either by sequencing or PCR based methods. However, the recovery of bisulfite-converted DNA is very poor.</p> <p>Results</p> <p>Here we introduce an alternative method for the crucial steps of bisulfite treatment with high recovery. The method is based on an accelerated deamination step and alkaline desulfonation in combination with magnetic silica purification of DNA, allowing preparation of deaminated DNA from patient samples in less than 2 hours.</p> <p>Conclusions</p> <p>The method presented here allows low levels of DNA to be easily and reliably analysed, a prerequisite for the clinical usefulness of cell-free methylated DNA detection in plasma.</p

    Global MicroRNA Expression Profiling of High-Risk ER+ Breast Cancers from Patients Receiving Adjuvant Tamoxifen Mono-Therapy: A DBCG Study

    Get PDF
    PURPOSE: Despite the benefits of estrogen receptor (ER)-targeted endocrine therapies in breast cancer, many tumors develop resistance. MicroRNAs (miRNAs) have been suggested as promising biomarkers and we here evaluated whether a miRNA profile could be identified, sub-grouping ER+ breast cancer patients treated with adjuvant Tamoxifen with regards to probability of recurrence. EXPERIMENTAL DESIGN: Global miRNA analysis was performed on 152 ER+ primary tumors from high-risk breast cancer patients with an initial discovery set of 52 patients, followed by two independent test sets (N = 60 and N = 40). All patients had received adjuvant Tamoxifen as mono-therapy (median clinical follow-up: 4.6 years) and half had developed distant recurrence (median time-to-recurrence: 3.5 years). MiRNA expression was examined by unsupervised hierarchical clustering and supervised analysis, including clinical parameters as co-variables. RESULTS: The discovery set identified 10 highly significant miRNAs that discriminated between the patient samples according to outcome. However, the subsequent two independent test sets did not confirm the predictive potential of these miRNAs. A significant correlation was identified between miR-7 and the tumor grade. Investigation of the microRNAs with the most variable expression between patients in different runs yielded a list of 31 microRNAs, eight of which are associated with stem cell characteristics. CONCLUSIONS: Based on the large sample size, our data strongly suggests that there is no single miRNA profile predictive of outcome following adjuvant Tamoxifen treatment in a broad cohort of ER+ breast cancer patients. We identified a sub-group of Tamoxifen-treated breast cancer patients with miRNA-expressing tumors associated with cancer stem cell characteristics

    HER2 and p95HER2 differentially regulate miRNA expression in MCF-7 breast cancer cells and downregulate MYB proteins through miR-221/222 and miR-503

    Get PDF
    Mecanismes de la malaltia; Càncer de mamaMecanismos de la enfermedad; Cáncer de mamaDisease Mechanisms; Breast CancerThe HER2 oncogene and its truncated form p95HER2 play central roles in breast cancer. Here, we show that although HER2 and p95HER2 generally elicit qualitatively similar changes in miRNA profile in MCF-7 breast cancer cells, a subset of changes are distinct and p95HER2 shifts the miRNA profile towards the basal breast cancer subtype. High-throughput miRNA profiling was carried out 15, 36 and 60 h after HER2 or p95HER2 expression and central hits validated by RT-qPCR. miRNAs strongly regulated by p95HER2 yet not by HER2, included miR-221, miR-222, miR-503, miR-29a, miR-149, miR-196 and miR-361. Estrogen receptor-α (ESR1) expression was essentially ablated by p95HER2 expression, in a manner recapitulated by miR-221/-222 mimics. c-Myb family transcription factors MYB and MYBL1, but not MYBL2, were downregulated by p95HER2 and by miR-503 or miR-221/-222 mimics. MYBL1 3′UTR inhibition by miR-221/222 was lost by deletion of a single putative miR-221/222 binding sites. p95HER2 expression, or knockdown of either MYB protein, elicited upregulation of tissue inhibitor of matrix metalloprotease-2 (TIMP2). miR-221/222 and -503 mimics increased, and TIMP2 knockdown decreased, cell migration and invasion. A similar pathway was operational in T47D- and SKBr-3 cells. This work reveals important differences between HER2- and p95HER2- mediated miRNA changes in breast cancer cells, provides novel mechanistic insight into regulation of MYB family transcription factors by p95HER2, and points to a role for a miR-221/222– MYB family–TIMP2 axis in regulation of motility in breast cancer cells.This work was supported by the Danish Council for Independent Research (grants no. 12-126942 and 12-127290 to SFP), by the Hartmann foundation (SFP), Fondation Juchum (SFP), Kirsten og Freddy Johansens Fond (SFP), the Breast Cancer Research Foundation (BCRF-17-008) (JA), Instituto de Salud Carlos III (PI16/00253) (JA) and the Harboe foundation (SFP). Katrine Franklin Mark is gratefully acknowledged for excellent technical assistance. We are grateful to Pascal Pineau from Institut Pasteur, France for the MYBL1 3′UTR/psiCHECK2 construct

    Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing

    Get PDF
    Recently, next-generation sequencing has been introduced as a promising, new platform for assessing the copy number of transcripts, while the existing microarray technology is considered less reliable for absolute, quantitative expression measurements. Nonetheless, so far, results from the two technologies have only been compared based on biological data, leading to the conclusion that, although they are somewhat correlated, expression values differ significantly. Here, we use synthetic RNA samples, resembling human microRNA samples, to find that microarray expression measures actually correlate better with sample RNA content than expression measures obtained from sequencing data. In addition, microarrays appear highly sensitive and perform equivalently to next-generation sequencing in terms of reproducibility and relative ratio quantification
    • …
    corecore