6 research outputs found

    Mechanisms of human dynamic object recognition revealed by sequential deep neural networks

    Get PDF
    Humans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood. Here, we developed deep learning models for dynamic recognition and compared different computational mechanisms, contrasting feedforward and recurrent, single-image and sequential processing as well as different forms of adaptation. We found that only models that integrate images sequentially via lateral recurrence mirrored human performance (N = 36) and were predictive of trial-by-trial responses across image durations (13–80 ms/image). Importantly, models with sequential lateral-recurrent integration also captured how human performance changes as a function of image presentation durations, with models processing images for a few time steps capturing human object recognition at shorter presentation durations and models processing images for more time steps capturing human object recognition at longer presentation durations. Furthermore, augmenting such a recurrent model with adaptation markedly improved dynamic recognition performance and accelerated its representational dynamics, thereby predicting human trial-by-trial responses using fewer processing resources. Together, these findings provide new insights into the mechanisms rendering object recognition so fast and effective in a dynamic visual world.</p

    Mechanisms of human dynamic object recognition revealed by sequential deep neural networks

    Get PDF
    Humans can quickly recognize objects in a dynamically changing world. This ability is showcased by the fact that observers succeed at recognizing objects in rapidly changing image sequences, at up to 13 ms/image. To date, the mechanisms that govern dynamic object recognition remain poorly understood. Here, we developed deep learning models for dynamic recognition and compared different computational mechanisms, contrasting feedforward and recurrent, single-image and sequential processing as well as different forms of adaptation. We found that only models that integrate images sequentially via lateral recurrence mirrored human performance (N = 36) and were predictive of trial-by-trial responses across image durations (13–80 ms/image). Importantly, models with sequential lateral-recurrent integration also captured how human performance changes as a function of image presentation durations, with models processing images for a few time steps capturing human object recognition at shorter presentation durations and models processing images for more time steps capturing human object recognition at longer presentation durations. Furthermore, augmenting such a recurrent model with adaptation markedly improved dynamic recognition performance and accelerated its representational dynamics, thereby predicting human trial-by-trial responses using fewer processing resources. Together, these findings provide new insights into the mechanisms rendering object recognition so fast and effective in a dynamic visual world.</p

    Arousal state affects perceptual decisionmaking by modulating hierarchical sensory processing in a large-scale visual system model

    No full text
    Arousal levels strongly affect task performance. Yet, what arousal level is optimal for a task depends on its difficulty. Easy task performance peaks at higher arousal levels, whereas performance on difficult tasks displays an inverted U-shape relationship with arousal, peaking at medium arousal levels, an observation first made by Yerkes and Dodson in 1908. It is commonly proposed that the noradrenergic locus coeruleus system regulates these effects on performance through a widespread release of noradrenaline resulting in changes of cortical gain. This account, however, does not explain why performance decays with high arousal levels only in difficult, but not in simple tasks. Here, we present a mechanistic model that revisits the Yerkes-Dodson effect from a sensory perspective: a deep convolutional neural network augmented with a global gain mechanism reproduced the same interaction between arousal state and task difficulty in its performance. Investigating this model revealed that global gain states differentially modulated sensory information encoding across the processing hierarchy, which explained their differential effects on performance on simple versus difficult tasks. These findings offer a novel hierarchical sensory processing account of how, and why, arousal state affects task performance

    Leveraging Spiking Deep Neural Networks to Understand the Neural Mechanisms Underlying Selective Attention

    No full text
    Spatial attention enhances sensory processing of goalrelevant information and improves perceptual sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on performance are still contested. Here, we examine different attention mechanisms in spiking deep convolutional neural networks. We directly contrast effects of precision (internal noise suppression) and two different gain modulation mechanisms on performance on a visual search task with complex real-world images. Unlike standard artificial neurons, biological neurons have saturating activation functions, permitting implementation of attentional gain as gain on a neuron’s input or on its outgoing connection. We show that modulating the connection is most effective in selectively enhancing information processing by redistributing spiking activity and by introducing additional task-relevant information, as shown by representational similarity analyses. Precision only produced minor attentional effects in performance. Our results, which mirror empirical findings, show that it is possible to adjudicate between attention mechanisms using more biologically realistic models and natural stimuli

    Leveraging Spiking Deep Neural Networks to Understand the Neural Mechanisms Underlying Selective Attention

    No full text
    Spatial attention enhances sensory processing of goalrelevant information and improves perceptual sensitivity. Yet, the specific neural mechanisms underlying the effects of spatial attention on performance are still contested. Here, we examine different attention mechanisms in spiking deep convolutional neural networks. We directly contrast effects of precision (internal noise suppression) and two different gain modulation mechanisms on performance on a visual search task with complex real-world images. Unlike standard artificial neurons, biological neurons have saturating activation functions, permitting implementation of attentional gain as gain on a neuron’s input or on its outgoing connection. We show that modulating the connection is most effective in selectively enhancing information processing by redistributing spiking activity and by introducing additional task-relevant information, as shown by representational similarity analyses. Precision only produced minor attentional effects in performance. Our results, which mirror empirical findings, show that it is possible to adjudicate between attention mechanisms using more biologically realistic models and natural stimuli
    corecore