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Leveraging Spiking Deep Neural Networks to Understand
the Neural Mechanisms Underlying Selective Attention

Lynn K. A. Sörensen1 , Davide Zambrano2,3, Heleen A. Slagter4,
Sander M. Bohté1,2,5, and H. Steven Scholte1

Abstract

■ Spatial attention enhances sensory processing of goal-
relevant information and improves perceptual sensitivity. Yet,
the specific neural mechanisms underlying the effects of spatial
attention on performance are still contested. Here, we examine
different attention mechanisms in spiking deep convolutional
neural networks. We directly contrast effects of precision (inter-
nal noise suppression) and two different gain modulation
mechanisms on performance on a visual search task with com-
plex real-world images. Unlike standard artificial neurons, bio-
logical neurons have saturating activation functions, permitting

implementation of attentional gain as gain on a neuron’s input
or on its outgoing connection. We show that modulating the
connection is most effective in selectively enhancing informa-
tion processing by redistributing spiking activity and by
introducing additional task-relevant information, as shown by
representational similarity analyses. Precision only produced
minor attentional effects in performance. Our results, which
mirror empirical findings, show that it is possible to adjudicate
between attention mechanisms using more biologically realistic
models and natural stimuli. ■

INTRODUCTION

Spatial attention is crucial for goal-directed behavior in
many everyday life situations in which one needs to
dynamically prioritize processing of information at certain
locations in the environment, such as when crossing the
street. Spatial attention is generally thought to increase
the signal-to-noise ratio of activity in sensory regions rep-
resenting the attended location. Yet, currently, there are
several proposals on how this could be implemented.
Some theories propose that spatial attention selectively
amplifies the neural signal by changing a neuron’s gain
(e.g., Reynolds & Heeger, 2009; Martinez-Trujillo & Treue,
2004), whereas others posit that spatial attention increases
the reliability or precision of processing, thereby empha-
sizing noise reduction rather than signal amplification as
a key mechanism underlying attention’s effects (Parr &
Friston, 2017; Feldman & Friston, 2010; Yu & Dayan,
2005). Computational models may allow for arbitration
between these different ideas, yet existing models either
examined attentional mechanisms in simplified sensory
conditions (Feldman & Friston, 2010; Yu & Dayan, 2005)
or were not developed to predict changes in performance
(e.g. Beuth &Hamker, 2015; Rothenstein & Tsotsos, 2014;
Reynolds & Heeger, 2009; Ma, Beck, Latham, & Pouget,

2006). As a result, it remains unclear how spatial attention
may facilitate the processing of task-relevant information
and thereby performance in more naturalistic settings:
through gain modulation, precision modulation (internal
noise suppression), or a combination of both.

Deep convolutional neural networks (DCNNs) are a way
to close this gap in knowledge by linking changes in pro-
cessing to performance in a fully controlled, yet statistically
rich setting (Kietzmann, McClure, & Kriegeskorte, 2019;
Richards et al., 2019; Scholte, 2018; Yamins & DiCarlo,
2016). Intriguingly, these networks not only parallel
human performance on some object recognition tasks
(VanRullen, 2017), but they also feature processing char-
acteristics that bear a lot of resemblance to the visual ven-
tral stream in primates (Schrimpf et al., 2020; Kubilius
et al., 2018; Eickenberg, Gramfort, Varoquaux, & Thirion,
2017; Güçlü & van Gerven, 2015; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014). Leveraging this
link between processing and performance has already
enhanced insight into the potential mechanisms underly-
ing shape perception (Kubilius, Bracci, & Op de Beeck,
2016), scene segmentation (Seijdel, Tsakmakidis, de
Haan, Bohte, & Scholte, 2020), and the role of recurrence
during object recognition (Kar, Kubilius, Schmidt, Issa, &
DiCarlo, 2019; Kietzmann, Spoerer, et al., 2019). DCNNs
thus provide a promising avenue for systematically inves-
tigating how different attention mechanisms may modu-
late neural processing, and thereby, performance.

Here, we use a recently developed class of networks,
spiking deep convolutional neural networks (sDCNNs;
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Zambrano, Nusselder, Scholte, & Bohté, 2018), which
combine state-of-the-art performance with biologically
inspired processing to arbitrate between different
proposals of how selective attention may be neurally
implemented. Findings from recent studies using DCNNs
suggest that changing a neuron’s gain is a viable way to
implement selective processing in DCNNs (Luo, Roads,
& Love, 2020; Lindsay & Miller, 2018; for a review, see
Lindsay, 2020). Yet, these studies did not directly contrast
different possible attention mechanisms. Spiking DCNNs
as used here provide important additional constraints that
can be used to evaluate the feasibility of different mecha-
nisms. Because of their integrated neuron models, infor-
mation is passed through these networks in temporal
spike trains. This makes it possible to measure firing rates,
examine population information, and estimate neural
latencies and detection times in the network’s output,
and then to compare the effects on these measures of
different manipulations in relation to findings from neuro-
scientific studies of attention.

sDCNNs provide two additional advantages compared
to DCNNs for studying the mechanisms underlying selec-
tive attention. First, because of the neuron models that
replace the activation functions used in DCNNs, sDCNN
have a more realistic activation regime throughout the
network. Commonly, DCNNs use a rectified linear unit
(ReLU; Nair & Hinton, 2010), whereas sensory neurons
feature an activation that is more sigmoidal-like (e.g.,
Dayan & Abbott, 2001) and that saturates at high values
(Naka & Rushton, 1966). This distinction becomes impor-
tant when applying multiplicative gain: Whereas for ReLUs
there is no difference between the modulation of the
input or output, for sigmoidal activation functions, there
is a marked asymmetry, which either leads to input or
response gain profiles (Ayaz & Chance, 2009; Reynolds
& Heeger, 2009; Martínez-Trujillo & Treue, 2002). To
understand how selective attention may modulate the
gain of neurons, this is a crucial feature that can also help
to further situate the findings of earlier DCNN studies
using ReLUs (Luo et al., 2020; Lindsay & Miller, 2018).

Second, sDCNNs feature task-unrelated noise because
of their signal transmission properties after spiking con-
version. In the brain, neural information transmission also
incurs task-unrelated noise for similar reasons (e.g., Allen
& Stevens, 1994), which may also affect perceptual perfor-
mance (Wyart, Nobre, & Summerfield, 2012). Selective
attention normally (in the brain) operates in the context
of noise. It is hence not surprising that in the sDCNNs,
which feature task-unrelated noise, target discrimination
was reduced compared to the noiseless network. There-
fore, having a model that also has task-unrelated noise is
crucial for understanding how different attention mecha-
nisms may affect and interact with this signal-to-noise
ratio.

In the current study, we capitalized on these properties
of sDCNNs to examine how attentional modulation of neu-
ral activity may enhance performance. Specifically, we

directly compared effects of three kinds of attentionmech-
anisms on performance and network processing, namely,
input gain, connection gain, and precision. To study the
separate effects of input and output gain modulations,
exploiting the asymmetry in our activation function, we
applied gain to the incoming current of a spiking unit
(input gain, Figure 1A) or we applied gain to the outgoing
spike train of the spiking unit. The latter is equivalent to
changing the connection strength to the postsynaptic unit
(connection gain, Figure 1B). To model precision, we
implemented a mechanism that selectively modulates
internal noise, that is, does not change the gain (precision,
Figure 1C). The effects of these three attention mecha-
nisms were evaluated in the same network during a visual
search task using real-world scene images with spatial
cueing. Leveraging the full observability of the networks,
we also examined the effects of the different attention
mechanisms on markers of attentional processing derived
from well-established empirical findings in primates,
including the magnitude of evoked potentials, firing rates,
and response latency. In a final step, we systematically
examined possible changes in representational content
(or the relative change in information present in the net-
work) caused by the three attention mechanisms using
representational similarity analysis.

METHODS

To directly compare the three different proposed atten-
tion mechanisms, we implemented these different mech-
anisms into the same sDCNN architecture and assessed
their effects on processing and performance during a
visual search task with spatial cues.

Visual Search Task and Data Set

As a first step, we curated a challenging visual search data set
that had a homogenous context and could contain multiple
target objects comparable to naturalistic visual search. In
particular, we used street scenes that could contain eight
possible target categories as stimuli. Furthermore, we used
a data set with food scenes during model development and
for exploratory experiments. To obtain images with a set of
potential target categories sharing a context, we first curated
these two data sets from the Common Objects in Context
(COCO) database (Lin et al., 2014). To obtain a homoge-
nous context, we quantified similarity in context as similarity
in the stuff annotations of the COCO data set (Caesar,
Uijlings, & Ferrari, 2016). Specifically, we focused on the
super categories from the stuff annotations (total: 15; e.g.,
wall, ceiling, sky, water) and defined a vector specifying
the presence for all these stuff annotations for every image.
From this, we computed the Euclidean distance between
different target category centers (average of all individual
vectors belonging to the same target category) so that if a
target category, on average, has the same stuff as another
target category, these would have a small distance in such
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Figure 1. Overview of the three implemented attention mechanisms: input gain, connection gain, and precision. Here, the effects are illustrated in
two ways: based on the modulation of the spiking neuron’s processes (top three rows, see inset for a schematic) and based on the activation
function, the activity of a spiking neuron over infinite time steps (bottom row). The first three rows show how an incoming current (Ij) is converted
into postsynaptic activation (Sj), which in turn leads to the neuron surpassing its firing threshold (ϑj) and to produce spikes at times t js. This spike
sequence is then again transmitted via a weighted connection and integrated by the next neuron, producing the postsynaptic activation Sk. (A) For
input gain, attentional modulation was implemented by multiplying the integrated current with a spatial weight and a gain factor (Sj; top row). This
modulation in turn affected all subsequent processes and ultimately led to a modulated firing rate (ϑj; second row) and a changed activation in the
next neuron (Sk; third row). Because this manipulation happened before the nonlinear process of spike generation, the amplification most strongly
affected mid-range values in the activation function (bottom row). (B) For connection gain, attentional modulation targeted the postsynaptic
weight, thereby resulting in an increase of activation in the next neuron (Sk; third row) but without changing the spike production (first and second
rows). In the activation function, this resulted in slope changes, producing the largest modulations for the strongest inputs (bottom row). (C) For
precision, attention concurrently modulated the adaptation speed mf and the postsynaptic weight. This changed the dynamic firing threshold (ϑj,
second row) and resulted in a change of precision by which the neuron is approximating the input current. By also adjusting the postsynaptic
weight, this led to a mechanism that did not affect the mean value but only resulted in differences in the internal noise over time (see modulations
of Sk, third row). The same effect is also illustrated in the width of the shaded areas of the activation function that varies across attention conditions
(bottom row).
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a stuff space. Basedon this procedure,we identified a cluster
with low distances in stuff space for street scenes that con-
tained 12 categories (person, bicycle, car, motorcycle, bus,
truck, traffic light, fire hydrant, stop sign, parking meter,
bench, and dog) and for food scenes containing 16 catego-
ries (bottle, wine glass, cup, fork, knife, spoon, bowl,
banana, apple, sandwich, orange, broccoli, carrot, pizza,
donut, and cake).

Next, these categories were further processed to select
high-quality images with only one recognizable instance of
a specific target category present. This is necessary to
make the spatial cue informative and advantageous for
performance, thus enabling us to quantify spatial cueing
in the model’s performance. For the street scenes, we
selected images that had a street stuff annotation; for
the food scenes, there could be a table, cloth, food-other,
vegetable, salad, fruit, and/or napkin stuff annotation. For
both data sets, we selected images with target objects that
were big enough (> 0.05% of the image), placed in a not
too complex scene (spatial coherence< 1.2 based on the
work of Scholte, Ghebreab, Waldorp, Smeulders, &
Lamme, 2009), were not too central (outside of a radius
of 5% from the image center), and salient enough
(summed object probability density from DeepGaze II >
0.04; Kümmerer, Wallis, & Bethge, 2016). This resulted in
eight eligible target categories with at least approximately
50 images with a single target object (street scenes: per-
son, bicycle, car, motorcycle, bus, truck, traffic light, fire
hydrant, stop sign, parking meter; food scenes: bottle,
wine glass, cup, cutlery, bowl, sandwich, carrot, cake).
To obtain a sufficient number of images (around 50
images) for eight categories in the food data set, we com-
bined the categories knife, spoon, and fork into a single
category of cutlery. The code for recreating these data sets
is available at https://github.com/ lynnsoerensen
/SpatialAttention_sDCNN_2020. Because of the data sets’
license status, the final data sets will not be shared publicly
but can be requested directly from the authors.

To assess the efficacy of every attention mechanism,
each model performed the visual search task on the
obtained single-target images from the street data set
(Ntotal = 1628, 224 × 224 pixels; see Figure 2C for an
example). To quantify the effect of spatial cue validity,
we defined a valid spatial cue for every image based on
the center of mass of the target object and an invalid cue
pointing to an irrelevant location (Figure 2B and 2E). The
invalid locations were obtained by randomly sampling
from a uniform distribution that was constrained to the
minimum and maximum values observed for the valid
cues (0.1–0.94 for the horizontal and 0.03–0.95 for the ver-
tical extent of the image). This sampling process was
repeated until the invalid location was at least 0.5 of the
image extent away from the valid cue. The valid and invalid
locations had, on average, a distance of 0.62 of the image
extent. Because of imperfect COCO annotations, some
images also featured two instances of the same target cat-
egory. To quantify the effect of the spatial bias introduced

by the attention mechanisms, we compared performance
between a validly cued (center of mass of a target object in
the scene), an invalidly cued (an unrelated location), and
an uncued (neutral) processed data set during most
analyses.

sDCNNs

Training and Fine-Tuning

We adopted an sDCNN to investigate how different atten-
tion mechanisms shape processing and performance. In
particular, we used a class of sDCNNs that are comparable
to standard DCNNs in most aspects, such as their object
recognition performance and training on large-scale data
sets. One of the most important differences is that the
standard ReLU activation function is replaced during
training with one that captures the activation function of
a biologically inspired neuron model. Specifically, we
used a first-generation ResNet18-architecture (Figure 1;
He, Zhang, Ren, & Sun, 2015) in which the ReLUs were
replaced with such a custom activation function approxi-
mating a spiking neuron’s input and output relationship,
which takes the form of a rectified sigmoid-like function.
We converted the DCNN to an sDCNN after training and
did not directly train an sDCNN because training spiking
networks on these deep architectures is exceedingly time-
consuming. Although it would be desirable to also train an
sDCNN in its spiking state, this approach allowed us to
yield competitive performance and at the same time still
experiment with the properties of spiking neuronmodels.
We used the network implementation by Zambrano

et al. (2018), and details and derivations of the activation
function can be found there. As with standard DCNNs,
the network was trained on the ImageNet data set
(Russakovsky et al., 2015) with stochastic gradient descent
(initial learning rate: 0.1 with Nesterov momentum of 0.9,
decay: 0.0001). The training parameter choices closely
followed He et al. (2015); training augmentation: random
cropping and horizontal flipping, test augmentation:
center crop). The learning rate was divided by 0.1 every
30 epochs. The final model performed at 64.04% (Top-1
accuracy) on the ImageNet validation set.
For the visual search task, the pretrained network was

fine-tuned on the street data set by replacing the last fully
connected layer by one with eight units and a sigmoid acti-
vation function. All remaining layers and their weights
were kept unchanged. During fine-tuning, we used images
with more than one target object present, selected based
on less stringent criteria than the test images (only based
on stuff annotations) resulting in 8640 training and 2160
validation images. The less stringent criteria were neces-
sary to produce a version of the data set that was large
enough for training. The newly added weights were opti-
mized with a binary cross-entropy loss, a learning rate of
0.0001, and an ADAM optimizer for 100 epochs. The final
binary accuracy on the multi-object data set was 88.74%.
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Spiking Inference

After training and fine-tuning, every activation function
in the network was replaced with a layer of spiking

neuron models that feature membrane potentials and
adaptive thresholds and that emit temporal spike
sequences as outputs. This means that the trained weights
were evaluated with a spiking network that computes

Figure 2. The sDCNN and its naturalistic visual search performance as a function of spatial cueing. (A) An illustration of the ResNet18 architecture with
spiking layers depicted by blue frames. The network either takes only an image or also a spatial cue as an input. We implemented the attention
mechanisms only in the residual branches of the network (filled blue frames in the lower branch of the network). The output layer was a sigmoid
activation function. (B) Illustration of the attention field centering on the cued location, where yellow-colored regions are allocated more spatial
attention and blue colored less compared to baseline. (C) An example image from the curated data set of street scenes. (D) Per image and cued location,
the sDCNN produces a prediction time course indicating the presence of the eight target categories. An object is present once its prediction exceeds
the detection threshold at 0.5. The x-axis shows time relative to the image onset. Passing information through the network takes approximately between
150 and 200 msec because of the spike generation. As a result, the first time points (−100 to 150 msec relative to the stimulus onset) show the biases
in the network acquired during training and do not feature any information from the image yet. The left two panels show the network predictions
when it was biased by a spatial cue (left: toward the location of the car, middle: away from location of a car). The right most panel shows the neutral
predictions for the shown image in (C). (E) Summary of the cueing effects for the car category for the predictions shown in (D). As can be seen, with
a valid cue, the network reports the presence of a car more reliably, whereas it misses the car with an invalid cue. The example image used in B, C, and E
is licensed under CC BY-NC 2.0 and was obtained from Flickr (https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg).

Sörensen et al. 659

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/4/655/1996708/jocn_a_01819.pdf by VU
 Am

sterdam
 user on 04 August 2022

https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg
https://farm4.staticflickr.com/3326/3259041418_48c260317a_z.jpg


continuously over time, thus encoding its activations in
binary signals.

The spiking neuron models used here operated on a
rate code, and higher firing rates thus encoded higher acti-
vation values. This coding principle was implemented by
using spiking neuron models that integrate and decay
current over time in their adaptive firing thresholds,
membrane potentials, and refractory responses (Bohte,
2012). Together, these features allowed us to convert a
continuous signal into a binary signal over time (analog-
to-digital converter; Yoon, 2017; Lazar & Toth, 2003).
This step also made it possible to obtain a network per-
forming close to the state-of-the-art (Zambrano et al.,
2018; Rueckauer, Lungu, Hu, & Pfeiffer, 2016), while also
operating with biologically plausible firing rates. All
implementation details of the spiking neurons can be
found in the work of Zambrano et al. (2018), and only
the key components are briefly summarized below:

The spiking neuron model consists of four major pro-
cesses: postsynaptic integration of the incoming spike
trains Ij(t), their conversion to activation Sj(t) through a
membrane filter, an adaptive threshold ϑj(t), and refrac-
tory period Ŝj tð Þ;which increase and decay as a function
of the timing between emitted spikes.

The postsynaptic current I in neuron j at time t is
given by

Ij tð Þ ¼
X
i

X
t is

wij exp
t is− t
τβ

� �

where t is is the timing of the incoming spikes from neu-
ron i weighted with wij. The postsynaptic current
decays with the time constant τβ. This becomes the
neuron’s activation Sj(t) by convolving Ij(t) with a nor-
malized exponential membrane filter ϕ(t):

Sj tð Þ ¼ ϕ � Ij
� �

tð Þ
The adaptive threshold ϑj is determined by both the
resting threshold ϑ0, the timing of emitted spikes by
the neuron, t js, the speed of adaptation mf, and the time
constant τγ:

ϑj tð Þ ¼ ϑ0 þ
X
t js

mfϑj t js
� �

exp
t js− t
τγ

� �

The refractory response Ŝj tð Þ, in turn, is also a function
of the adaptive threshold ϑj and the timing of emitted
spikes t js but now decaying with the time constant τη:

Ŝj tð Þ ¼
X
t js

ϑj t js
� �

exp
t js− t
τη

� �

A spike is emitted at time t js if Sj tð Þ−Ŝj tð Þ > 0:5 ϑj tð Þ,
and no spike is produced if that condition is not met,
resulting in a binary temporal sequence. This spike
sequence is scaled by the constant h to correct for

the adaptation speed mf such that the next neuron k
receives the following postsynaptic current:

Ik tð Þ ¼
X
j

X
t js

hwjk exp
t js− t
τβ

� �

By concurrently adjusting the speed of adaptation mf

and the spike height h, it is ensured that the same
mean value is approximated by the spiking neuron and
thus that the trained weights obtained from the non-
spiking network are still informative.
In all our experiments, the baseline firing threshold, ϑ0,

and adaptation speedmf were set to 0.45, τγ was 15 msec,
and both τη and τβ were set to 50 msec, resulting in a net-
work in which every neuron fired, on average, at 18.63 Hz.
During stimulus presentation, a 100-msec prestimulus
period was included to take adaptation in the network,
such as the saturation of the adaptive threshold, from
the image onset response, into account (see Figure 2D
for an example). In total, the network was evaluated over
a period of 750 msec. In contrast to the other spiking
layers, the sDCNN output layer had a longer membrane
potential time constant (τϕ, 50 msec vs. 2.5 msec) and
did not produce spikes as output but rather returned its
activation Slast(t), thus producing the smooth prediction
time courses as shown in Figure 2.
All DCNNs, as well as sDCNNs models, were imple-

mented, trained, and evaluated in Keras with a tensorflow
backend. The code is available at https://github.com
/lynnsoerensen/SpatialAttention_sDCNN_2020.

Attention Mechanisms

To compare the different proposed attention mechanisms
(input gain, connection gain, and precision), we imple-
mented these attention mechanisms into the same base
model, thus keeping weights, architecture, and internal
noise levels exactly the same.
In line with earlier work (Anton-Erxleben & Carrasco,

2013; Reynolds &Heeger, 2009), wemodeled the distribu-
tion of spatial attention R as a bivariate Gaussian distribu-
tion over space (Figure 2B). The center of the Gaussian
was placed at the cued location. The standard deviations
were kept at 40 pixels for both spatial dimensions. We
chose this standard deviation because the average area
of an object is equivalent to a circle with a ca. 41-pixel
radius. The attention field was normalized to have an aver-
age of 0 over all spatial locations based on the assumption
that attention involves a redistribution of resources. This
thus resulted in some locations being upscaled, whereas
others were downscaled. The spatial reweighting was
applied identically for all mechanisms.
The implementation of input gain to a neuron j followed

Sj tð Þ ¼ ϕ � Ij
� �

tð Þ αinputRþ 1
� �

where R is the attention field and αinput is the gain factor.
Input gain thus scaled the incoming activation of the
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neuron and adjusted the spike production accordingly
(Figure 1A).
For connection gain, a gain factor was applied to the

outgoing synaptic connection wjk to the next neuron k:

Ik tð Þ ¼
X
j

X
t js

αoutputRþ 1
� �

wjkh exp
t js− t
τβ

� �

where αoutput is the gain factor. This step scales the out-
going spike trains with regard to the impact they will
have on the next layer (Figure 1B). Whereas input gain
thus operated on the incoming activation, connection
gain targeted the outgoing activation of a neuron by
modulating the strength of the connection.
During spiking inference, the binary signals passed

between the layers of the network are temporal approxi-
mations of the static function learned during training and
these binary signals incur internal noise. Internal noise is
thus an unavoidable consequence of using an sDCNN. For
implementing precision, we capitalized on this aspect and
exclusively changed the internal noise, but not the
encoded values, by concurrently adjusting the speed of
adaptation mf and the spike height h (Figure 1C). Specif-
ically, the speed of the adaptation mf was modulated by
the spatial attention field R and the scale factor αprecision:

mfR ¼ mfbaseline−αprecisionR

Accordingly, mfR defines the speed of adaptation for all
spatial locations. Such a manipulation also changes the
adaptive thresholds in the spiking neuron models, as
can be seen in the equations above. When also adjusting
the spike height h accordingly, this produces a situation
in which the mean approximation of the neuron stays the
same, yet the precision of the approximation is varied
(Figure 1C). Depending on the value ofmf, a neuron thus
produced a more or less precise approximation of the
output value. As explained above, this means that the
same underlying function can still be computed, allowing
the network to perform, but depending on the spatial
attention field R and the scale factor αprecision, this hap-
pens in a more or less precise fashion for different spatial
locations. So, in contrast to gain-based mechanisms that
change the activation level in the neuron, this mechanism
increases the precision, that is, reduces the internal noise,
at attended locations, and reduces the precision at unat-
tended locations.
All attention mechanisms targeted the spiking layers in

the residual branch of the network (Figure 2A), and the
skip branch was thus unaffected by the attentional modu-
lation. This choice was made based on exploratory exper-
iments on the food data set (see Visual Search Task
and Dataset section), in which we observed that these
branches are set up to be antagonistic, thus modulating
the skip branch while also targeting the residual branch
cancelled out the effects of attention. In these exploratory
experiments, we also observed that it was the most effec-
tive to target all residual branches simultaneously. To do

this, the attention field was downsampled to match the
spatial dimension of the residual branches.

For the main experiments, we compared all mecha-
nisms by quantifying the effect of the spatial bias, that is,
the difference between a valid, invalid, and a neutral cue,
introduced by the different attention mechanisms (see
Figure 2E for an illustration).

All mechanisms contained a free parameter α. Varying α
for all mechanisms effectively reshaped the distribution of
attention across space, while keeping the mean identical
to the neutral condition (see Figure 3A for an illustration).
For the gain-based mechanisms, attentional modulation
varied around a gain factor of 1, and for precision, atten-
tional modulation varied around mfbaseline. Whereas for
gain-based mechanisms, gain factors above one resulted
in enhanced processing, for precision, this was achieved
with lowered mf values relative to mfbaseline. Importantly,
in contrast to gain-based modulations, the precision and
modulation of mf were limited by the properties of the
spiking neuron model. In particular, adopting very low
mf values produced too high firing rate regimes, resulting
in information loss because of the sampling limit (i.e., the
ability to distinguish different spiking sequences, dashed
line Figure 3A).

To identify well-performing versions of every mecha-
nism, we searched through different parameters for α
between 0 and 0.75 in increments of 0.05 (αinput, αoutput,
and αprecision, respectively). Based on the performance on
a training set (50% of the single-target data set, n = 814),
we chose the best performing model with a valid cue
on this data set. While searching the parameter space for
αprecision, we observed a rapid decay in performance once
mf values were reached that surpassed the sampling limit
(mfsampling limit = 0.06, αprecision > 0.6; see Figure 3). The
best performing hyperparameters on the training set were
0.3 for αoutput (connection gain), 0.15 for αinput (input
gain), and 0.45 for αprecision (precision; see Figure 3B),
and these values were adopted for all other simulations.

Analyses

Model Performance—Target Discrimination and
Detection Times

The analyses on model performance were done on the
output of the sigmoid activation function obtained from
the sDCNN on the held-out single-target images (n =
815). We evaluated the model’s target discrimination
with the area under curve (AUC) metric across all experi-
ments. To convert the spiking model predictions to this
metric, we computed the average of the prediction
time-course between 150 and 650 msec after stimulus
onset (Figure 2D). We only evaluated the prediction
time-course after 150 msec because the early model
responses were largely dominated by the bias terms that
the network acquired during training and the saturation of
the adaptation in the spiking neuron models (ca. 100 msec
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before stimulus onset). That responses do not yet feature
much information from the test image before this time is
because of the temporal characteristics of the spiking neu-
ron models, which require some time to integrate and
pass on signals throughout the network hierarchy. As a
result, responses to individual images could only be
obtained during these later periods.

The attention conditions (valid, invalid, neutral) were
statistically compared with permutation-testing for a dif-
ference in average AUC (10000 permutations). This was
done separately for every mechanism. We performed four
pairwise comparisons per mechanism and adjusted our
alpha level of 0.05 according to the Benjamini-Hochberg
procedure per inference (Benjamini & Hochberg, 1995)
for this analysis and for all later analyses. For all analyses,
permutation-testing was performed across stimuli, in con-
trast to model instances, and statistical significance thus
implied a significant change caused by a mechanism that
is significant given the variability in the data set.

The model was optimized to predict the presence of a
target class by returning values larger than 0.5 because of
the use of a sigmoid function at the output layer. We used
this feature to estimate the detection time of the model.
We defined the detection time as the time point at which
the target prediction time course crosses the detection
threshold. As described above, prediction time courses
were analyzed 150 msec after stimulus onset to separate
the stimulus response from the general adaptation
response caused by the biases in the network (see
Figure 2D for an example).

For both AUC scores and detection times, we estimated
95% confidence intervals using stratified sampling with
replacements across stimuli in the test data set.
Prediction modulation was estimated by subtracting the

neutral models’ trials responses (to a single image in the
data set) from the valid or invalid trial responses (to that
same image), thereby showing the actual change in predic-
tion introduced by the spatial cue. The 95% confidence
intervals were obtained by sampling with replacement
from the trials separately per time point.

Layer Responses—Evoked Potentials, Firing Rates,
and Latencies

To determine how observed changes in performance by
our attention manipulations may have affected network
activity and to relate these to established neural indices
of attention, we analyzed a layer’s responsemore carefully.
Specifically, we focused on effects on evoked potentials,
firing rates and latencies and to this end, analyzed the spik-
ing layer of the sixth residual branch (layer 25, 14 × 14 ×
256). All analyses attempted to follow approaches from
neural recording studies as closely as possible.
For all measures, we recorded units representing the

center of mass of the target object for all feature maps in
a layer. We chose to do this because we did not want to
make a sub-selection of units based on a small sample of
stimuli, but instead our goal was to look at the entire layer
to get a representative sample. Attention conditions (valid,

Figure 3. Optimization of attention mechanisms. (A) The impact of α for the three attention mechanisms. Changing α led to the same redistribution
of attentional resources across space for all mechanisms. A small value of α approximated the neutral condition (without attentional reweighting),
whereas large values of α led to a strong amplification at the center of the cue and a concurrent suppression in the periphery. For gain-based
mechanisms, higher values of α led to higher gain factors at the center of the attention field. In contrast for precision, increases in α resulted in
smaller adaptation speeds at attended locations, leading to increases in firing rates and reduced internal noise. Yet, precision could only be increased
up to certain boundary, which was defined by the neuron’s sampling limit. Beyond this limit, the neuron’s signal processing capacity became
corrupted. α affected the entire attention field R. Here, we only show the central section for illustrative purposes. (B) Identifying the best version for
all attention mechanisms. To identify a well-performing version of every mechanism, we performed a grid search by evaluating the benefits in
performance derived from a valid cue for all mechanisms on separate training set. This showed that all mechanisms were at their best at different α
values, thus benefiting from differently extreme distributions (input gain: 0.15, output gain: 0.3, precision: 0.45, indicated by the same-colored dots).
The sudden collapse in performance of precision beyond α of 0.55 is because of the neuron’s sampling limit.
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invalid, neutral cue) were compared by recording from the
same set of units.
As outlined above, some attention mechanisms tar-

geted the outgoing synaptic connections wjk, thus mea-
suring the targeted units directly would have the side
effect of measuring this very manipulation. We therefore
added the spikes of the manipulated unit into another
unweighted unit.
For the evoked potentials, we integrated the spikes

from the manipulated neurons and read out the potential.
These are thus a direct precursor of the firing rates. For the
firing rates, we reported the output of the unweighted
neuron. For illustration purposes, the obtained spike his-
tograms across all features maps were smoothed with a
temporal Gaussian kernel (standard deviation of 8 msec)
in Figure 5B.
The response latency for the spike responses were

calculated by a metric that closely followed (Sundberg,
Mitchell, Gawne, & Reynolds, 2012; Lee, Williford, &
Maunsell, 2007). Specifically, latency was defined as the
time by which the spike density function reached 50% of
the maximum firing rate of the first peak in the transient
response after stimulus onset.
To estimate the latency, the spike responses were first

smoothed over time with a Gaussian filter (standard devi-
ation of 8 msec). In a next step, every trial was compared
back tobaselinemeasurements inwhich16 average images
based on 50 randomly picked images from the training set
were presented to the network. Based on the activation of
the baseline activation in every trial, we determined the
99.99% percentile of activation (corresponding to 3.72
SEM in Sundberg et al., 2012) and used this value as a cri-
terion to identify the first local peak after stimulus onset.
Both baseline and experimental trials were baseline-
corrected based on the 50 msec prior to image onset.
If a trial did not surpass the criterion for activation, we

could not estimate the latency, which led to a different
number of trials that were excluded per attention mecha-
nism and cue (see Table 1) of a total of 815 trials for
every cue condition. For all measures, we estimated 95%
confidence intervals by resampling with replacements
across trials.

Representational Similarity Analysis

We next looked at how our different attention mecha-
nisms and conditions may have affected the information
in our network using representational similarity analysis.
Because of computational constraints, we used a subset
of the images compared to the rest of the experiments
(400 in total, 50 per category). The resulting sub–data
set was classified by the noiseless model with a similar
level of performance as other randomly drawn samples
from the data set (AUC: 0.8452 vs. 0.8409, selected vs.
resampled).
For every image, mechanism and attention condition,

we obtained the evoked activations for network layer 37.

We chose this layer because it is the very last spiking layer
of the ResNet blocks and is not targeted by attention itself
because it is part of the skip branch.

We obtained the pairwise Pearson correlation between
every image for every time point and model with the
respective mechanism and attention condition sepa-
rately, thus giving us seven representational dissimilarity
time courses.

The goal for this analysis was to understand how the
representations in the network are altered by the different
attention mechanisms. We reasoned that a closer similar-
ity to the nonspiking, noiseless network means that the
spiking network recovers from the introduced noise
because of the spatial attention cue. In a similar vein, we
expected that the similarity with the categorical represen-
tational dissimilarity matrix (RDM) should grow if there is
additional target object information present that helps the
network at the task. To test this, we correlated every time-
point of the seven RDM time courses with either the noise-
less or categorical RDMs.

The nonspiking, noiseless network’s RDM and the cate-
gorical RDM are correlated because the noiseless network
has been optimized to distinguish these object classes and
the categorical RDM embodies the best possible distinc-
tion between the object classes, the ideal observer. Yet,
these RDMs are also not identical. For example, the noise-
less RDMmight contain systematic errorsmade by the net-
work due its imperfect solution of the task found during
training. Observing that this kind of variation (i.e., system-
atic errors acquired during training) increases because of
selective attention is a unique signature of the noiseless
network and indicative of an attention mechanism that
reduces the noise on the distinction learned during train-
ing, a scenario we term noise suppression. Conversely, if
the RDM affected by an attention mechanism contains
more categorical information than the categorical infor-
mation of the noiseless network, this indicates that the
selective attention mechanism increased the distinction
between the object categories beyond the trainedweights.
This would suggest that new categorical information was
added and thus that the signal in the network was
enhanced. In our analysis, importantly, we could dissoci-
ate between these two scenarios. Specifically, to this

Table 1. Missing Trials for Latency Estimation per Attention
Mechanism and Cue

Mechanism Valid Cue Invalid Cue

Precision 55 112

Input gain 34 96

Connection gain 25 96

Baseline (no cue) 133

The procedure of the latency estimation involved to assess whether a
spiking unit was more active compared to baseline. If this baseline cri-
terion was not exceeded, no latency estimate was made. More active
networks are thus less likely to have missing trials compared to inactive
networks.
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end, we calculated the partial correlation for these two
predictors, thus giving us the unique contribution of both
predictor RDMs, while keeping the influence of the other
predictor constant. To compare this to the neutral model,
we subtracted the partial correlations of neutral condition
from all other partial correlations. We assessed statistical
significance by comparing the mean bootstrapped differ-
ence between 150–650 msec to zero. For all time courses,
we estimated 95% confidence intervals by resampling with
replacements across the RDMS per timepoint.

Software

In addition to custom code (https:/ /github.com
/ lynnsoerensen/SpatialAttention_sDCNN_2020), the
results presented here were obtained while relying on
the following Python packages: NumPy (Harris et al.,
2020), keras (Chollet, 2015), TensorFlow (Abadi et al.,
2016), Pandas (McKinney, 2010), Pingouin (Vallat, 2018),
Scikit-Learn (Pedregosa, 2011), and SciPy (Virtanen et al.,
2020). Data visualization was done using matplotlib
(Hunter, 2007) and, in particular, seaborn (Waskom
et al., 2020).

RESULTS

We adopted an sDCNN to investigate how different atten-
tion mechanisms affect processing and performance
during a challenging visual search task.

Connection Gain Most Effectively Produces Spatial
Cueing Effects on Performance

Humans are faster and more accurate when targets occur
at a validly cued spatial location compared to an invalidly
cued one (Carrasco, 2011; Posner, 1980). In our first anal-
ysis, we show that connection gain is best at changing the
network’s performance in the same way.

Figure 4A shows the predictionmodulation for all atten-
tionmechanisms (valid/invalid vs. neutral trial predictions)
evolving over time.We see that for all mechanisms, the tar-
get class is modulated up or down depending on the cue’s
validity, suggesting that the spatial cue led to amodulation
of the target class predictions and thus came at a cost or
benefit to themodel’s prediction. To quantify the effect on
target discrimination of this modulation per mechanism,
we computed the AUC scores and compared these scores
to those of a neutral (without any spatial attention bias)
and noiseless, nonspiking network (as obtained after train-
ing and before spiking conversion). For all networks, we
inspected the average prediction in the period of 150–
650 msec after stimulus onset. To assess whether the
mechanisms introduced spatial cueing effects, we per-
formed pairwise permutation tests contrasting target dis-
crimination in validly and invalidly cued trials. We found
that only connection gain produced different levels of tar-
get discrimination as a function of cue validity ( p = .002)

that were larger than the variability expected from the
stimulus set (Figure 4C).
Selective attention normally (in the brain) operates in

the context of noise. It is hence not surprising that in
the sDCNNs, the feature task-unrelated noise, target dis-
crimination was reduced compared to the noiseless net-
work (Figure 4C). To assess how the different attention
mechanisms can deal with noise, we tested for a difference
between all mechanisms with a valid cue and the noiseless
model’s target discrimination. We found that only for pre-
cision target discrimination was significantly reduced
compared to the noiseless network ( p = .01). This thus
indicates that especially gain-based mechanisms were able
to overcome the noise inherent in sDCNNs with a valid cue.
As a next step, we evaluated if spatial cueing also influ-

enced detection time. The sDCNN were trained to report
the presence of a target category by using a sigmoid func-
tion with a cutoff at 0.5 during a multilabel task. We here
interpret the first time point after 150 msec at which this
threshold is passed as detection time. Figure 4B shows the
detection time distributions for all studiedmechanisms for
the different trial types. Comparing the medians of these
distributions between the valid and invalid cues reveals
significant differences in detection times for both gain-
based mechanisms (all p < .002), but not for precision
( p = .359, Figure 4D). Again, a model with connection
gain produced the largest reaction time validity effects.
Taken together, both the model’s ability to discriminate

as well as its detection times were most strongly modu-
lated by connection gain, reproducing the characteristic
shifts in performance observed in spatial cueing studies
in humans.

All Attention Mechanisms Can Qualitatively
Replicate Neural Changes

The effects of spatial attention on processing in visual cor-
tices have been extensively documented (Maunsell, 2015).
Here, we investigated how the different mechanisms
implemented in our sDCNNs induced neural changes of
the kind and magnitude observed in empirical studies.
In particular, we examined changes in evoked potential,
firing rates, and latency. For this, we looked at spiking
units from the sixth ResNet block, which is in the middle
of the network (Figure 2A). These units still have some
degree of spatial specificity while also having a sizable
impact on network performance. Within the sixth block,
we selected units that represented the features at the cen-
ter of mass of the target object. We recorded from these
units under three conditions: without a cue, with a valid
cue, and with an invalid cue.
The evoked potentials, that is, the integrated currents

inside of the spiking units, are the most comparable to
the activations observed in nonspiking DCNNs. If an input
gain mechanism works as expected, it should modulate
these values, as these are the proportional markers of
encoded activation. With the sDCNN, we have the
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possibility to see how the encoded values at valid and inva-
lid locations change with the different attention mecha-
nisms, and to link these changes directly to changes in
firing rate. In contrast, measuring the evoked potentials
in single neurons simultaneously in a large population
can be experimentally challenging. To obtain the evoked
potential without measuring the direct consequence of
the attentional manipulations (e.g., a change in postsyn-
aptic weight) as well, we integrated the spike trains into
another neuron.
Figure 5A shows the average evoked response across

the entire data set (n = 815) for the three attention
mechanisms. Comparing the mean modulation between
150 and 650 msec across mechanisms revealed that the
evoked potentials were modulated significantly by all
attention mechanisms, as indicated by significant differ-
ences in potential amplitude between the valid and invalid

cue conditions (all p < .001, Figure 5D). Following our
behavioral results, connection gain numerically had the
greatest effects on evoked responses, and precision the
smallest.

Next, we studied how these changes in evoked potential
may translate to changes in firing rate. Modulation of firing
rate by spatial attention is a very common observation in
electrophysiological studies. Firing rates typically change
as a function of cue validity with a modulation range of
5%–30% compared to baseline (Maunsell, 2015). Here,
we found that all mechanisms resulted in changes within
this range.

For measuring the firing rates, we recorded spike trains
at the output of the next unit. Because for connection gain,
the strength of the connection to the next neuron was
manipulated, this kept the impact of attention for all
measurements the same. Figure 5B shows the average

Figure 4. Connection gain most strongly modulated performance. (A) Illustration of how the network’s average responses were modulated by the
spatial cues by subtracting the attended trials from the neutral trials. The panels show the data for each attention mechanism. (B) Detection time
distributions across the different trial types for all mechanisms. (C) Overview of spatial cueing effects on target discrimination (x-axis) for the different
attention mechanisms ( y-axis). The y-axis is ordered according to valid cue performance. The shaded area around the noiseless model as well as the
error bars represent the 95% confidence interval resampled across data set stimuli. The attention mechanisms were defined based on a prior grid
search over the gain parameter on a separate data set (see Figure 3). (D) Overview of spatial cueing effects on detection times for all attention
mechanisms.

Sörensen et al. 665

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/4/655/1996708/jocn_a_01819.pdf by VU
 Am

sterdam
 user on 04 August 2022



response across the data set for all mechanisms. In con-
trast to typical analysis protocols of experimental data,
we did not make any preselection of units based on their
responsiveness. Because our networks are sparse in their
activations, this results in low firing rates (Figure 5B).

Across mechanisms, there was a significant increase in
firing rates in response to a valid compared to an invalid
cue (all p < .001, Figure 5E). To link these changes back
to experimental data, we plotted the range of 5%–30% of
modulation compared to the neutral model (gray shaded

Figure 5. Effects of precision, input and connection gain on key neural indices of attention: evoked potentials, firing rate and latency. (A) Evoked
potential time courses measured from spiking units at the center of the target object in a given image for the three different conditions (valid, invalid,
and neutral cue) for all mechanisms. Shaded areas depict the 95% confidence interval (CI) obtained with resampling across stimuli. (B) Average spike
count time courses from the same units shown in (A). The spike count time courses have been temporally smoothed with a Gaussian kernel. (C)
Latency estimate distributions for all mechanisms. Latencies were estimates from the smoothed spike count histogram and defined as the time when
50% of the first peak was reached. KDE stands for kernel density estimate. (D) Mean evoked potential between 150 and 650 msec compared across
different attention mechanisms. The error bars depict the 95% CI for (D, E, and F). (E) Mean firing rates for the different attention mechanisms. The
gray boxes indicate a modulation of 5%–30% from baseline as observed in experimental data (Maunsell, 2015). (F) Median latencies for the different
conditions across attention mechanisms.
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areas). It becomes clear that all models are producing
changes that are within the biologically observed range
with connection gain being the best performing mecha-
nism. Interestingly, the two gain-based mechanisms were
associated with comparable firing rate modulations.
Lastly, spatial attention has not only been shown to

alter the response magnitude of visual cortical neurons,
but also to modulate the latency of their responses.
Sundberg et al. (2012) reported that attention was associ-
ated with a reduction in latency between 0.5 and 2msec of
both the spiking and local field potential responses of
neurons in V4. Similar findings have also been reported
for middle temporal visual area, suggesting an overall reduc-
tion in response latency across multiple visual areas
(Galashan, Saßen, Kreiter, & Wegener, 2013). In our next
analysis, we examined the latency changes introduced by
the different attention mechanisms in response to a valid
and invalid cue. In brief, we find that all mechanisms mark-
edly affected the processing latency, yet at a much larger
magnitude than observed in neural data and that this change
was mainly driven by benefits in response to a valid cue.
To obtain latency estimates, we re-analyzed the firing

rate data with regard to the first modulation compared
to baseline activity per trial. We defined latency as the time
point by which the smoothed spike density function
reached 50% of the maximum firing rate of the first peak
in the response after stimulus onset following Sundberg
et al. (2012).
Figure 5C shows the distribution of estimated latencies

for all mechanisms. The difference in distributions along
the x-axis indicates a large decrease in latency for valid
cues. Indeed, for all attentionmechanisms, we observe fas-
ter response latencies in valid compared to invalid cue
conditions (all p < .033, Figure 5F). Yet, only valid cues
produced a reliable latency benefit across all mechanisms
compared to the neutral condition (all p < .001). Again,
following our behavioral results, latency reductions were
largest for connection gain, and smallest for precision. Fur-
thermore, observed latency differences were much larger
than those typically observed in neural processing (11.5–
44 msec vs. 0.5–2 msec). This suggests that there are
potentially important differences between the neural
and sDCNN firing rate data in the onset response and
the temporal adaptation that may have made this analysis
approach less suitable for sDCNNs.
In summary, we found that all mechanisms modulated

evoked potentials, firing rates, and latencies according to
cue validity, thereby mostly paralleling observations from
neural recordings.

Only Gain Mechanisms Introduce
Additional Information

Lastly, we sought to capture the impact that these various
attention mechanisms have on the representations in the
network. In primates, spatial and category-based attention
have been reported to improve neural population coding

in inferior temporal cortex of real-world objects among
distractors (McKee, Riesenhuber, Miller, & Freedman,
2014; Zhang et al., 2011), suggesting that selective atten-
tion can amplify information in a noisy neuronal popula-
tion. What still remains an open question is whether this
improvement in population coding stems from a less noisy
representation (internal noise suppression) or rather can
be attributed to additional information about the attended
object or location (signal enhancement). Therefore next,
we aimed to understand how specifically the different
attention mechanisms increased the signal-to-noise ratio.
Using a representational similarity analysis, as detailed
below, we show that gain-basedmechanisms achieved this
by adding signal to the network’s representations,
whereas precision resulted only in noise suppression.

With our models, we are in the position of having full
access to all the units in a layer without incurring measure-
ment noise. In addition, we also have a notion of the noise
of the network at baseline (neutral network) and the rep-
resentation of the noiseless network (nonspiking). With
this, we can disentangle the relative contribution of noise
recovery and added signal because of the spatial informa-
tion of the attention cue by using representational similar-
ity analysis (Kriegeskorte, Mur, & Bandettini, 2008). For
this analysis, we define noise recovery as an increase in
similarity between a spiking network and its noiseless
counterpart (Figure 6B), and an increase in signal as an
increase in similarity of the spiking network to a fully cat-
egorical representation (Figure 6A).

Because of computational constraints for the sDCNN,
we selected a random set of 50 images per category (400
images in total). Because the effects on population coding
have been reported in inferior temporal cortex, we chose
the first spiking layer of the decoding block (Figure 2A, the
first spiking layer after the last ResNet block). We con-
structed an RDM for every time step separately for each
network (attention mechanism) presented with a valid
or invalid cue. Figure 6C shows four example time frames
from the neutral network to illustrate the temporal evolu-
tion of the RDMs. To quantify noise suppression and
signal enhancement, respectively, we used the correlation
with the noiseless (Figure 6B) and categorical model
(Figure 6A) as our metric. Because both of the RDMs
are highly correlated, we disentangled their unique con-
tributions by computing the partial correlation. We used
this metric to estimate whether there was a statistically
significant shift in explained variance by comparing the
unique correlations for a valid and invalid conditions to
the neutral condition, respectively. Within a given mech-
anism, we constructed a 95% confidence interval for the
difference between the valid and invalid trials, and esti-
mated variability by means of bootstrapping with replace-
ment across stimuli.

Examining the changes in RDMs over time across the
different mechanisms and cues, we see an increasing cor-
relation to the noiseless network over time that stabilizes
around 300 msec after stimulus onset (Figure 6D, left
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Figure 6. Gain mechanisms selectively enhance categorical information. (A) Organization of the categories in the RDM. For every category, there
were 50 images. The categories were organized according to visual similarity. For illustration purposes, the correlation coefficients were ranked. (B)
RDM of the layer of interest from the noiseless, nonspiking network. (C) RDMs from four time points after stimulus onset for the neutral network.
(D) Left panel: Pearson correlation coefficients between the noiseless model and the temporal RDMs separately for the three attention models
(precision, input gain, connection gain) and the neutral model. The shaded areas represent the 95% confidence interval obtained from resampling
across stimuli. Middle panel: Partial correlation coefficients for the comparison in the left panel and now controlling for the categorical RDM shown in
(A). Right panel: Average difference in partial correlation between attention models and the neutral model. (E) Left panel: Pearson correlation
between the categorical model and the temporal RDMs shown separately for the three attention models and the neutral model. Middle and right
panels: Same as in D, but now controlling for the noiseless model.
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panel). Comparing the three different attention mecha-
nisms to the neutral network after controlling for categor-
ical information (Figure 6D, middle panel), we observe
that all mechanisms became more similar to the noiseless
network upon presentation with a valid cue (all p < .002).
When examining the effect of an invalid cue (Figure 6D,
right panel), only input gain and connection gain led to
a decrease in similarity (all p < .002, pprecision = .02). Pair-
wise comparisons within a validity condition indicate that
all mechanisms were different from one another (all p <
.002) except for precision and connection gain with a valid
cue ( p = .836). Altogether, this suggests a reinstatement
of the noiseless network representations for all mecha-
nisms if presented with a valid cue, and a decrease in
similarity for invalid cues for gain mechanisms.
For signal enhancement as expressed in a correlation

with the categorical model, we observed similar temporal
characteristics as for the noise recovery (Figure 6E, left
panel). Yet, after controlling for the effect of noise recov-
ery, we found that only the mechanisms that changed the
signal (i.e., input and connection gain) featured signifi-
cantly more additional categorical information with a valid
cue (Figure 6E, middle and right panel, pprecision = .012,
remaining p < .002). The same was true for an invalid
cue, where only input gain and connection gain, but not
precision, decreased the amount of categorical informa-
tion compared to the neutral network ( pprecision = .012,
remaining p < .002). Pairwise comparisons between the
mechanisms within a validity condition further support
the existence of differences in signal enhancement, as sig-
nificant differences between all mechanisms were
observed for both valid and invalid cues (all ps < .002).
In summary, the different attention mechanisms intro-

duced different representational changes: Whereas all
examined mechanisms reinstated the representations
used by the noiseless network to a similar degree, gain
mechanisms that targeted the signal were more effective
at adding categorical information beyond the trained
weights compared to the noiseless network. This suggests
that additional categorical information was derived from
the spatial cue that effectively helped performance.

DISCUSSION

In this modeling study, we examined how spatial attention
may affect sensory processing and performance on a chal-
lenging visual search task using an sDCNN. Specifically, we
directly contrasted effects of three different mechanisms
previously proposed to subserve selective attention
(e.g., Feldman & Friston, 2010; Reynolds & Heeger,
2009; Martinez-Trujillo & Treue, 2004; Dayan, Kakade, &
Montague, 2000), namely, gain modulation on the input
to a neuron, gain modulation on its postsynaptic connec-
tion, and modulation of the neuron’s precision (internal
noise). We found that connection gain was most effective
at implementing spatial attention, as indicated by the
largest performance modulations, whereas precision and

input gain were less effective. That is, connection gain
modulations produced the largest difference in detecting
and discriminating targets occurring at a validly cued spa-
tial location compared to an invalidly cued one, a pattern
commonly observed in humans (Carrasco, 2011; Posner,
1980). Moreover, connection gain also well reproduced
several key experimental findings in visual cortex
(Maunsell, 2015), including a proportionate modulation
in firing rates. Disentangling the representational changes
introduced by the three main mechanisms in the network
revealed that gain-based mechanisms in particular added
task-relevant information, whereas all networks showed
similar recovery from the noise. These results mirror find-
ings from the animal and human literature that show that
attention can enhance the representational content of
neural activity (e.g., Jehee, Brady, & Tong, 2011; Zhang
et al., 2011). Together, these findings advance our under-
standing of how spatial attention might be mechanistically
implemented at the neural level, as discussed in more
detail below.

Our finding that connection gain was not only more
effective than precision, but also than input gain, high-
lights that the asymmetry in the activation function plays
a big role in the efficacy of gain on the model’s perfor-
mance: Connection gain was more effective at enhancing
activation in a useful fashion and thereby biased the net-
work’s performance more strongly compared to input
gain. This result helps us to better understand how this
asymmetry can act as a constraint for a gain mechanism.
This finding also sheds new light on past studies that
used ReLUs to implement gain (Luo et al., 2020; Lindsay
& Miller, 2018): A shared feature between their gain
implementation and our connection gain is that both
approaches specifically boost larger values; that is, higher
values are proportionally more affected compared to
smaller values. Based on our results, we can thus specu-
late that these larger values in particular are important
for boosting performance, at least in DCNNs.

In contrast to gain, we found that precision was not as
effective as gain-based mechanisms at implementing
attentional selection as reflected in performance mea-
sures. This finding was unexpected because global
changes in precision have been shown to lead to substan-
tial changes in noise during processing in a previous
sDCNN study and are a powerful way to increase and
decrease the network’s performance (Zambrano et al.,
2018). It also does not align with notions that assign an
important role to reliability or precision in selective infor-
mation processing, and that emphasize noise reduction
rather than signal amplification (Parr & Friston, 2017;
Feldman & Friston, 2010; Dayan et al., 2000). One poten-
tial explanation that could reconcile our finding with this
past work is that we did not use precision in the context of
a Bayesian observer framework (Parr & Friston, 2017;
Feldman & Friston, 2010). Instead, our notion of precision
is directly grounded in the signal-detection framework,
where a signal is represented in a more or less narrow
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distribution, making it thereby more or less distinguish-
able from noise. It is a possibility that such a mechanism
proves to be more effective when used on prediction
errors rather than on stimulus-driven information. Preci-
sion may also play a more dominant role in well-trained
systems: A set of ERP studies by Itthipuripat, Cha, Byers,
and Serences (2017) and Itthipuripat, Ester, Deering,
and Serences (2014) showed that spatial attention was
associated with a gain modulation of early visual-evoked
potentials early in training, but with noise reduction at
advanced stages of training (Itthipuripat et al., 2017).
These findings suggest that the mechanisms through
which spatial attention facilitates performance may
depend on the specific behavioral training regime used,
with gain-type mechanisms subserving selective informa-
tion processing in relatively untrained systems, as in our
models. Under the assumption that learning affects the
synaptic strength akin to a momentary gain change, we
can make the prediction that precision should be espe-
cially successful in our models once we allow for weight
adaptation after trials with attentional selection. Future
studies are necessary to test this prediction.

To accommodate our studied attention mechanisms,
we augmented a standard DCNN with spiking neurons,
resulting in three key changes: a changed activation
regime because of the sigmoidal transfer function, tempo-
ral processing, and internal noise during spiking inference.
Whereas the first change was essential to define input and
connection gain and to address the issue of saturation in
biological neurons, the latter enabled us to implement
precision and tomimic noisy neural transmission. The sec-
ond change, temporal processing, was useful to connect
our model to both behavioral reaction times and neural
latencies. Interestingly, temporal processing in ourmodel,
which was solely obtained by combining the neuron
model with standard feedforward network weights,
already exhibited dynamics attesting to evidence accumu-
lation over time (see Figure 2D). This highlights how
our approach can enrich the standard DCNN perfor-
mance measures, for instance, as a baseline model for
temporal dynamics and speed–accuracy trade-offs for
other more complex temporal vision models deploying
recurrency (e.g., Spoerer, Kietzmann, Mehrer, Charest,
& Kriegeskorte, 2020). For the activation regime, our
results establish that the asymmetry between input and
connection gain can be a decisive factor for the efficacy
of an attention mechanism and that competitive task per-
formance can be maintained despite this design choice
(Zambrano et al., 2018). Indeed, some of our framework
could be pursued without the spiking neurons, and one
could adopt a feedforward DCNN with an altered activa-
tion function instead as we have used during training.
While sacrificing a level of detail, such a network would
still permit to further explore the efficacy of attentional
gain modulations in a leaner computational setting.

The current results are based on a ResNet-18 architec-
ture, and we chose this architecture because it has been

shown to be successful at object recognition while having
a relatively modest number of parameters, a desirable
property when implementing memory-intensive spiking
networks. The use of this particular architecture may have
affected our results. For instance, it is conceivable that
the interplay between the residual and skip connections
typical for ResNets (see Figure 2A for an illustration) was
particularly suitable for gain-based mechanisms in con-
trast to precision. Although we a priori did not anticipate
such an interaction between architecture and attention
mechanisms, follow-up studies with simpler feedforward
architectures are necessary to further examine the extent
to which our findings generalize to other network
architectures.
Our findings on input and connection gain raise the

question of how these mechanisms might link to selective
attention in biological neurons. The effects of input
gain could be related to what has been referred to as con-
trast gain in neural processing (Reynolds, Pasternak, &
Desimone, 2000). Such neural changes aremathematically
equivalent to a multiplication of the incoming current
(Reynolds & Heeger, 2009). Yet, how specifically this mul-
tiplicative gain could be implemented in a neuron is still a
matter of active research (for a recent review, see the work
of Ferguson & Cardin, 2020). The effects of connection
gain resemble neural changes described as response gain:
increased firing rates that scale beyond the maximum
response observed under neutral conditions (McAdams
& Maunsell, 1999; Treue & Martínez Trujillo, 1999). This
gain profile may arise from the same neural populations
as contrast gain, yet in situations in which a relatively small
attention field is paired with a large stimulus (Reynolds &
Heeger, 2009). For its biological implementation, it has
been suggested that both neural contrast and response
gain can be obtained by combining a multiplicative gain
on excitatory inputs with lateral or feedforward inhibition
(Beuth & Hamker, 2015). Another recent proposal is the
addition of a current in a recurrently connected excitatory-
inhibitory circuit, which results in a multiplicative gain that
can also show a switch from contrast to response gain
(Lindsay, Rubin, & Miller, 2019). An alternative for how
connection gain effects could be implemented indepen-
dently of contrast gain is as a change in synaptic efficacy, as
was reported in a set of studies in lateral geniculate nucleus
and primary visual cortex (Hembrook-Short, Mock, Usrey, &
Briggs, 2019; Briggs, Mangun, & Usrey, 2013). Future exper-
imental and modeling studies will be crucial to further link
biological circuits to computational functions during atten-
tional selection. Our results suggest that there is a compu-
tational advantage in amplifying a neuron’s outputs, akin to
both response and connection gain, rather than its inputs,
even when the system features noise.
A central goal of the current modeling experiments was

to study attention mechanisms in the context of more bio-
logically plausible processing constraints. A challenge
inherent to any such endeavor is that the validity of
findings is determined by the accuracy of the model in
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capturing relevant biological properties. Our study was
conducted with adaptive spiking neurons (Bellec, Salaj,
Subramoney, Legenstein, & Maass, 2018; Bohte, 2012).
We chose this neuron model because it allowed us to
implement key biological properties (e.g., adaptive
thresholds, saturation at realistic firing rates; Zambrano
et al., 2018) and relate changes in firing rates, population
information, neural latencies, discrimination perfor-
mance, and detection times in the network’s output to
key findings from behavioral and neuroscientific studies
of attention. While thereby providing important addi-
tional, neurally grounded constraints for evaluating the
feasibility of different mechanisms compared to existing
DCNNs that have used ReLUs, our neuron models do
not have stochastic firing thresholds or other sources of
intertrial variability because of the intended conversion
after training. As a consequence, it is not possible to relate
our results to effects of selective attention on spike count
variability or noise, which have also been reported in the
literature as a measure of noise (Cohen & Maunsell, 2009;
Mitchell, Sundberg, & Reynolds, 2007, 2009). A recent
study suggests that such measures can be reproduced in
a circuit of neuron models injected with synaptic noise
(Lindsay et al., 2019). Future studies that include such syn-
aptic noise and also assess the noise covariance between
neurons are necessary to establish a more direct link to
noise correlations and to complement the presented
results.
Finally, although our results speak to the efficacy of the

three studied attention mechanisms, there are numerous
factors that we did not explore systematically in this study.
For instance, it is well established that the degree of atten-
tional modulation increases throughout the visual hierar-
chy and is first observed in higher and later on in lower
visual areas (Buffalo, Fries, Landman, Liang, & Desimone,
2010; Mehta, Ulbert, & Schroeder, 2000). Future studies
using our modeling framework could study how these
effects may dynamically come about. In particular, one
could design different scenarios that independently vary
the strength of attentional modulation, its timing, and
the targeted network layers to understandwhich combina-
tion may best match empirical results, and provide new
insight into how attentional biases may be propagated
through the visual hierarchy.
In this study, we examined how three main attention

mechanisms can shape a complex and noisy process such
as object recognition in natural scenes. Leveraging
sDCNNs, we were able to inspect the computational con-
sequences of different proposals of how selective atten-
tion may be implemented in the brain. Across a variety
of measures, we observed a computational advantage of
gain-based and in particular connection gain-based mech-
anisms, in contrast to precision. Our results highlight that
sDCNNs provide a suitable modeling framework for con-
necting empirical observations from performance to
neural processing and illustrate how they can be used to
differentiate between theories.
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