102 research outputs found

    The influence of defects on magnetic properties of fcc-Pu

    Full text link
    The influence of vacancies and interstitial atoms on magnetism in Pu has been considered in frames of the Density Functional Theory (DFT). The relaxation of crystal structure arising due to different types of defects was calculated using the molecular dynamic method with modified embedded atom model (MEAM). The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb and spin-orbital interactions) method in matrix invariant form was applied to describe correlation effects in Pu with these types of defects. The calculations show that both vacancies and interstitials give rise to local moments in ff-shell of Pu in good agreement with experimental data for annealed Pu. Magnetism appears due to destroying of delicate balance between spin-orbital and exchange interactions.Comment: 13 pages, 4 figure

    Modeling the actinides with disordered local moments

    Full text link
    A first-principles disordered local moment (DLM) picture within the local-spin-density and coherent potential approximations (LSDA+CPA) of the actinides is presented. The parameter free theory gives an accurate description of bond lengths and bulk modulus. The case of δ\delta-Pu is studied in particular and the calculated density of states is compared to data from photo-electron spectroscopy. The relation between the DLM description, the dynamical mean field approach and spin-polarized magnetically ordered modeling is discussed.Comment: 6 pages, 4 figure

    Thermal Equation of State of Tantalum

    Full text link
    We have investigated the thermal equation of state of tantalum from first principles using the Linearized Augmented Plane Wave (LAPW) and pseudopotential methods for pressures up to 300 GPa and temperatures up to 10000 K. The equation of state at zero temperature was computed using LAPW. For finite temperatures, mixed basis pseudopotential computations were performed for 54 atom supercells. The vibrational contributions were obtained by computing the partition function using the particle in a cell model, and the the finite temperature electronic free energy was obtained from the LAPW band structures. We discuss the behavior of thermal equation of state parameters such as the Gr\"uneisen parameter γ\gamma, qq, the thermal expansivity α\alpha, the Anderson-Gr\"uneisen parameter δT\delta_T as functions of pressure and temperature. The calculated Hugoniot shows excellent agreement with shock-wave experiments. An electronic topological transition was found at approximately 200 GPa

    Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping

    Full text link
    Explicit and semi-explicit geometric integration schemes for dissipative perturbations of Hamiltonian systems are analyzed. The dissipation is characterized by a small parameter ϵ\epsilon, and the schemes under study preserve the symplectic structure in the case ϵ=0\epsilon=0. In the case 0<ϵ10<\epsilon\ll 1 the energy dissipation rate is shown to be asymptotically correct by backward error analysis. Theoretical results on monotone decrease of the modified Hamiltonian function for small enough step sizes are given. Further, an analysis proving near conservation of relative equilibria for small enough step sizes is conducted. Numerical examples, verifying the analyses, are given for a planar pendulum and an elastic 3--D pendulum. The results are superior in comparison with a conventional explicit Runge-Kutta method of the same order

    High Pressure Thermoelasticity of Body-centered Cubic Tantalum

    Full text link
    We have investigated the thermoelasticity of body-centered cubic (bcc) tantalum from first principles by using the linearized augmented plane wave (LAPW) and mixed--basis pseudopotential methods for pressures up to 400 GPa and temperatures up to 10000 K. Electronic excitation contributions to the free energy were included from the band structures, and phonon contributions were included using the particle-in-a-cell (PIC) model. The computed elastic constants agree well with available ultrasonic and diamond anvil cell data at low pressures, and shock data at high pressures. The shear modulus c44c_{44} and the anisotropy change behavior with increasing pressure around 150 GPa because of an electronic topological transition. We find that the main contribution of temperature to the elastic constants is from the thermal expansivity. The PIC model in conjunction with fast self-consistent techniques is shown to be a tractable approach to studying thermoelasticity.Comment: To be appear in Physical Review

    The Cerium volume collapse: Results from the LDA+DMFT approach

    Full text link
    The merger of density-functional theory in the local density approximation (LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio calculation of Ce including the inherent 4f electronic correlations. We solve the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the Ce energy, spectrum, and double occupancy as a function of volume. At low temperatures, the correlation energy exhibits an anomalous region of negative curvature which drives the system towards a thermodynamic instability, i.e., the γ\gamma-to-α\alpha volume collapse, consistent with experiment. The connection of the energetic with the spectral evolution shows that the physical origin of the energy anomaly and, thus, the volume collapse is the appearance of a quasiparticle resonance in the 4f-spectrum which is accompanied by a rapid growth in the double occupancy.Comment: 4 pages, 3 figure

    Ground State Theory of delta-Pu

    Full text link
    Correlation effects are important for making predictions in the delta phase of Pu. Using a realistic treatment of the intra-atomic Coulomb correlations we address the long-standing problem of computing ground state properties. The equilibrium volume is obtained in good agreement with experiment when taking into account Hubbard U of the order 4 eV. For this U, the calculation predicts a 5f5 atomic-like configuration with L=5, S=5/2, and J=5/2 and shows a nearly complete compensation between spin and orbital magnetic moments.Comment: 4 pages, 1 postscript figure, 1 jpg figure (viewable via Netscape, IE
    corecore