102 research outputs found
The influence of defects on magnetic properties of fcc-Pu
The influence of vacancies and interstitial atoms on magnetism in Pu has been
considered in frames of the Density Functional Theory (DFT). The relaxation of
crystal structure arising due to different types of defects was calculated
using the molecular dynamic method with modified embedded atom model (MEAM).
The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb
and spin-orbital interactions) method in matrix invariant form was applied to
describe correlation effects in Pu with these types of defects. The
calculations show that both vacancies and interstitials give rise to local
moments in -shell of Pu in good agreement with experimental data for
annealed Pu. Magnetism appears due to destroying of delicate balance between
spin-orbital and exchange interactions.Comment: 13 pages, 4 figure
Modeling the actinides with disordered local moments
A first-principles disordered local moment (DLM) picture within the
local-spin-density and coherent potential approximations (LSDA+CPA) of the
actinides is presented. The parameter free theory gives an accurate description
of bond lengths and bulk modulus. The case of -Pu is studied in
particular and the calculated density of states is compared to data from
photo-electron spectroscopy. The relation between the DLM description, the
dynamical mean field approach and spin-polarized magnetically ordered modeling
is discussed.Comment: 6 pages, 4 figure
Thermal Equation of State of Tantalum
We have investigated the thermal equation of state of tantalum from first
principles using the Linearized Augmented Plane Wave (LAPW) and pseudopotential
methods for pressures up to 300 GPa and temperatures up to 10000 K. The
equation of state at zero temperature was computed using LAPW. For finite
temperatures, mixed basis pseudopotential computations were performed for 54
atom supercells. The vibrational contributions were obtained by computing the
partition function using the particle in a cell model, and the the finite
temperature electronic free energy was obtained from the LAPW band structures.
We discuss the behavior of thermal equation of state parameters such as the
Gr\"uneisen parameter , , the thermal expansivity , the
Anderson-Gr\"uneisen parameter as functions of pressure and
temperature. The calculated Hugoniot shows excellent agreement with shock-wave
experiments. An electronic topological transition was found at approximately
200 GPa
Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping
Explicit and semi-explicit geometric integration schemes for dissipative
perturbations of Hamiltonian systems are analyzed. The dissipation is
characterized by a small parameter , and the schemes under study
preserve the symplectic structure in the case . In the case
the energy dissipation rate is shown to be asymptotically
correct by backward error analysis. Theoretical results on monotone decrease of
the modified Hamiltonian function for small enough step sizes are given.
Further, an analysis proving near conservation of relative equilibria for small
enough step sizes is conducted.
Numerical examples, verifying the analyses, are given for a planar pendulum
and an elastic 3--D pendulum. The results are superior in comparison with a
conventional explicit Runge-Kutta method of the same order
High Pressure Thermoelasticity of Body-centered Cubic Tantalum
We have investigated the thermoelasticity of body-centered cubic (bcc)
tantalum from first principles by using the linearized augmented plane wave
(LAPW) and mixed--basis pseudopotential methods for pressures up to 400 GPa and
temperatures up to 10000 K. Electronic excitation contributions to the free
energy were included from the band structures, and phonon contributions were
included using the particle-in-a-cell (PIC) model. The computed elastic
constants agree well with available ultrasonic and diamond anvil cell data at
low pressures, and shock data at high pressures. The shear modulus and
the anisotropy change behavior with increasing pressure around 150 GPa because
of an electronic topological transition. We find that the main contribution of
temperature to the elastic constants is from the thermal expansivity. The PIC
model in conjunction with fast self-consistent techniques is shown to be a
tractable approach to studying thermoelasticity.Comment: To be appear in Physical Review
The Cerium volume collapse: Results from the LDA+DMFT approach
The merger of density-functional theory in the local density approximation
(LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio
calculation of Ce including the inherent 4f electronic correlations. We solve
the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the
Ce energy, spectrum, and double occupancy as a function of volume. At low
temperatures, the correlation energy exhibits an anomalous region of negative
curvature which drives the system towards a thermodynamic instability, i.e.,
the -to- volume collapse, consistent with experiment. The
connection of the energetic with the spectral evolution shows that the physical
origin of the energy anomaly and, thus, the volume collapse is the appearance
of a quasiparticle resonance in the 4f-spectrum which is accompanied by a rapid
growth in the double occupancy.Comment: 4 pages, 3 figure
Ground State Theory of delta-Pu
Correlation effects are important for making predictions in the delta phase
of Pu. Using a realistic treatment of the intra-atomic Coulomb correlations we
address the long-standing problem of computing ground state properties. The
equilibrium volume is obtained in good agreement with experiment when taking
into account Hubbard U of the order 4 eV. For this U, the calculation predicts
a 5f5 atomic-like configuration with L=5, S=5/2, and J=5/2 and shows a nearly
complete compensation between spin and orbital magnetic moments.Comment: 4 pages, 1 postscript figure, 1 jpg figure (viewable via Netscape,
IE
- …