93 research outputs found
Assessment of drinking water quality at the tap using fluorescence spectroscopy
Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown. In this study, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSDÂ =Â 3.5-4.4%), with half of measured variation explained by interactions with copper. After accounting for quenching by copper, fluorescence provided a very stable background signal (RSD
Morphology of the earliest reconstructable tetrapod Parmastega aelidae.
The known diversity of tetrapods of the Devonian period has increased markedly in recent decades, but their fossil record consists mostly of tantalizing fragments1-15. The framework for interpreting the morphology and palaeobiology of Devonian tetrapods is dominated by the near complete fossils of Ichthyostega and Acanthostega; the less complete, but partly reconstructable, Ventastega and Tulerpeton have supporting roles2,4,16-34. All four of these genera date to the late Famennian age (about 365-359 million years ago)-they are 10 million years younger than the earliest known tetrapod fragments5,10, and nearly 30 million years younger than the oldest known tetrapod footprints35. Here we describe Parmastega aelidae gen. et sp. nov., a tetrapod from Russia dated to the earliest Famennian age (about 372 million years ago), represented by three-dimensional material that enables the reconstruction of the skull and shoulder girdle. The raised orbits, lateral line canals and weakly ossified postcranial skeleton of P. aelidae suggest a largely aquatic, surface-cruising animal. In Bayesian and parsimony-based phylogenetic analyses, the majority of trees place Parmastega as a sister group to all other tetrapods
A new species of Varanus (Anguimorpha: Varanidae) from the early Miocene of the Czech Republic, and its relationships and palaeoecology
Skeletal remains of a new early Miocene (Ottnangian, MN 4 mammal zone) monitor lizard, Varanus mokrensis sp. nov., are described from two karst fissures in the Mokrá-Western Quarry (1/2001 Turtle Joint; 2/2003 Reptile Joint), Czech Republic, providing the first documented example of a European varanid for which osteological data permit a well-supported assignment to the genus Varanus. The new species is morphologically similar to the Recent Indo-Asiatic varanids of the Varanus bengalensis group. It differs from all other Varanus species on the basis of a single autapomorphy and a combination of 11 characters. As a distinguishing feature of V. mokrensis, the parietal and squamosal processes of the postorbitofrontal form a narrowly acute angle. The teeth show distinct, smooth cutting edges along the mesial and distal margins of the apical portion of their crowns. This feature is not observed in most extant Asiatic Varanus species and may represent a plesiomorphic condition. The results of parsimony phylogenetic analyses, with and without character reweighting, reveal poor resolution within Varanus. A Bayesian analysis shows V. mokrensis to be closely related to extant representatives of the Indo-Asiatic Varanus clade, with close affinities to the V. bengalensis species group. The topology of the Bayesian tree supports the hypothesis that Miocene monitors from Mokrá are representatives of a lineage that is ancestral to the well-defined clade of extant African varanids, including the early Miocene V. rusingensis. In addition, our results support a Eurasian origin for the varanid clade. The extant African Varanus species probably originated in the late Oligocene. The radiation of African varanids probably occurred during the late Oligocene to early Miocene time interval. The occurrence of Varanus in the early Miocene of Mokrá-Western Quarry corresponds to the warm phase of the Miocene Climatic Optimum. Remains of a diverse aquatic and heliophobe amphibian fauna at the 2/2003 Reptile Joint site indicate more humid conditions than those at the 1/2001 Turtle Joint site
Estimation of tree lists from airborne laser scanning by combining single-tree and area-based methods
Individual tree crown segmentation from airborne laser scanning (ALS) data often fails to detect all trees depending on the forest structure. This paper presents a new method to produce tree lists consistent with unbiased estimates at area level. First, a tree list with height and diameter at breast height (DBH) was estimated from individual tree crown segmentation. Second, estimates at plot level were used to create a target distribution by using a k-nearest neighbour (k-NN) approach. The number of trees per field plot was rescaled with the estimated stem volume for the field plot. Finally, the initial tree list was calibrated using the estimated target distribution. The calibration improved the estimates of the distributions of tree height (error index (EI) from 109 to 96) and DBH (EI from 99 to 93) in the tree list. Thus, the new method could be used to estimate tree lists that are consistent with unbiased estimates from regression models at field plot level
- …