2 research outputs found

    Experimental investigation of mid-infrared laser action from DY3+ doped fluorozirconate fiber

    Get PDF
    Efficient continuous-wave laser operation at 2.982 μm is achieved with a Dy3:fluoride fiber pumped using an inhouse-built 1.1 μm ytterbium (III) fiber laser. The laser output power reached is 554 mW, with a maximum slope efficiency of 18% with respect to the launched pump power. Additionally, the measured spontaneous luminescence within the visible wavelength range, under 1.1 μm pumping, is presented and attributed to excited state absorption (ESA). The influence of the ESA on the laser performance is discussed. The results confirm that high output powers from Dy: fluoride fiber laser pumped at 1.1 μm are possible

    Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

    No full text
    © 2015 Optical Society of America. Rare earth (RE)-ion doped chalcogenide glasses are attractive for mid-infrared (MIR) fiber lasers for operation >4 μm. Our prior modeling suggests that praseodymium (Pr) is a suitable RE-ion dopant for realizing a selenide-based, chalcogenide-glass, step index fiber (SIF) MIR fiber laser operating at 4-5 μm wavelength. Fabrication of RE-ion doped chalcogenide glass fiber, especially with a small core, is a demanding process because crystallization must be avoided during the heat treatments required to effect shaping. Here, a 500 ppmw (parts per million parts, by weight) Pr3+-doped Ge-As-Ga-Se glass SIF with a 10 μm or 15 μm diameter core is reported; the cladding glass is Ge-As-Ga-Se-S. The multistage process to produce the fiber is outlined. Thermal and optical properties of the core/clad. glass pair, and the crystalline/amorphous nature and optical behavior of the small core fiber are reported. MIR photoluminescence and lifetime of a RE-ion doped chalcogenide glass small core fiber are reported for the first time
    corecore