36 research outputs found

    p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death

    Get PDF
    In large models of neuronal cell death, there is a tight correlation between Cdk5 deregulation and cell-cycle dysfunction. However, pathways that link Cdk5 to the cell cycle during neuronal death are still unclear. We have investigated the molecular events that precede p25/Cdk5-triggered neuronal death using a neuronal cell line that allows inducible p25 expression. In this system, no sign of apoptosis was seen before 24 hours of p25 induction. Thus, at that time, cell-cycle-regulatory proteins were analysed by immunoblotting and some of them showed a significant deregulation. Interestingly, after time-course experiments, the earliest feature correlated with p25 expression was the phosphorylation of the retinoblastoma protein (Rb). Indeed, this phosphorylation was observed 6 hours after p25 induction and was abolished in the presence of a Cdk5 inhibitor, roscovitine, which does not inhibit the usual Rb cyclin-D kinases Cdk4 and Cdk6. Furthermore, analyses of levels and subcellular localization of Cdk-related cyclins did not reveal any change following Cdk5 activation, arguing for a direct effect of Cdk5 activity on Rb protein. This latter result was clearly demonstrated by in vitro kinase assays showing that the p25-Cdk5 complex in our cell system phosphorylates Rb directly without the need for any intermediary kinase activity. Hence, Rb might be an appropriate candidate that connects Cdk5 to cell-cycle deregulation during neuronal cell death

    Two-Dimensional Electrophoresis of Tau Mutants Reveals Specific Phosphorylation Pattern Likely Linked to Early Tau Conformational Changes

    Get PDF
    The role of Tau phosphorylation in neurofibrillary degeneration linked to Alzheimer's disease remains to be established. While transgenic mice based on FTDP-17 Tau mutations recapitulate hallmarks of neurofibrillary degeneration, cell models could be helpful for exploratory studies on molecular mechanisms underlying Tau pathology. Here, “human neuronal cell lines” overexpressing Wild Type or mutated Tau were established. Two-dimensional electrophoresis highlights that mutated Tau displayed a specific phosphorylation pattern, which occurs in parallel to the formation of Tau clusters as visualized by electron microscopy. In fact, this pattern is also displayed before Tau pathology onset in a well established mouse model relevant to Tau aggregation in Alzheimer's disease. This study suggests first that pathological Tau mutations may change the distribution of phosphate groups. Secondly, it is possible that this molecular event could be one of the first Tau modifications in the neurofibrillary degenerative process, as this phenomenon appears prior to Tau pathology in an in vivo model and is linked to early steps of Tau nucleation in Tau mutants cell lines. Such cell lines consist in suitable and evolving models to investigate additional factors involved in molecular pathways leading to whole Tau aggregation

    The peptidyl prolyl cis/trans isomerase Pin1 downregulates the Inhibitor of Apoptosis Protein Survivin.

    Get PDF
    The peptidyl prolyl cis-trans isomerase Pin1 and the Inhibitor of Apoptosis Protein (IAP) Survivin are two major proteins involved in cancer. They both modulate apoptosis, mitosis, centrosome duplication and neuronal development but until now no functional relationship has been reported between these two proteins. We tested Pin1-induced regulation of Survivin in neuroblastoma cells. Pin1 overexpression in SY5Y neuroblastoma cells decreased Survivin levels. Immunocytochemical studies indicated that they partially co-localized in interphase and mitotic cells. Co-immunoprecipitation further demonstrates the existence of a Pin1/Survivin complex. Pin1-induced effect on Survivin was confirmed in COS cells. RT-PCR and mutagenesis experiments suggested that this Pin1-induced decrease of Survivin occurred at the protein level. Survivin downregulation depended on the binding ability of Pin1 but was not related to the single Thr-Pro site, suggesting an indirect relationship into a protein complex. Finally, this functional regulation of Survivin by Pin1 is reciprocal since Pin1 silencing led to an increase in Survivin levels. The characterization of this functional relationship between Pin1 and Survivin might help to better understand mitosis control and cancer mechanisms.info:eu-repo/semantics/publishe

    Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits.

    No full text
    Tau transgenic mice are valuable models to investigate the role of tau protein in Alzheimer's disease and other tauopathies. However, motor dysfunction and dystonic posture interfering with behavioral testing are the most common undesirable effects of tau transgenic mice. Therefore, we have generated a novel mouse model (THY-Tau22) that expresses human 4-repeat tau mutated at sites G272V and P301S under a Thy1.2-promotor, displaying tau pathology in the absence of any motor dysfunction. THY-Tau22 shows hyperphosphorylation of tau on several Alzheimer's disease-relevant tau epitopes (AT8, AT100, AT180, AT270, 12E8, tau-pSer396, and AP422), neurofibrillary tangle-like inclusions (Gallyas and MC1-positive) with rare ghost tangles and PHF-like filaments, as well as mild astrogliosis. These mice also display deficits in hippocampal synaptic transmission and impaired behavior characterized by increased anxiety, delayed learning from 3 months, and reduced spatial memory at 10 months. There are no signs of motor deficits or changes in motor activity at any age investigated. This mouse model therefore displays the main features of tau pathology and several of the pathophysiological disturbances observed during neurofibrillary degeneration. This model will serve as an experimental tool in future studies to investigate mechanisms underlying cognitive deficits during pathogenic tau aggregation.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease.

    No full text
    Deregulation of Tau phosphorylation is a key question in Alzheimer disease pathogenesis. Recently, Pin1, a peptidylprolyl cis/trans-isomerase, was proposed to be a new modulator in Tau phosphorylation in Alzheimer disease. In vitro, Pin1 was reported to present a high affinity for both Thr(P)-231, a crucial site for microtubule binding, and Thr(P)-212. In fact, Pin1 may facilitate Thr(P)-231 dephosphorylation by protein phosphatase 2A through trans isomerization of the Thr(P)-Pro peptide bound. However, whether Pin1 binding to Tau leads to isomerization of a single site or of multiple Ser/Thr(P)-Pro sites in vivo is still unknown. In the present study, Pin1 involvement was investigated in stress-induced Tau dephosphorylation with protein phosphatase 2A activation. Both oxidative (H2O2) and heat stresses induced hypophosphorylation of a large set of phospho-Tau epitopes in primary cortical cultures. In both cases, juglone, a Pin1 pharmacological inhibitor, partially prevented dephosphorylation of Tau at Thr-231 among a set of phosphoepitopes tested. Moreover, Pin1 is physiologically found in neurons and partially co-localized with Tau. Furthermore, in Pin1-deficient neuronal primary cultures, H2O2 stress-induced Tau dephosphorylation at Thr(P)-231 was significantly lower than in wild type neurons. Finally, Pin1 transfection in Pin1-deficient neuronal cell cultures allowed for rescuing the effect of H2O2 stress-induced Tau dephosphorylation, whereas a Pin1 catalytic mutant did not. This is the first demonstration of an in situ Pin1 involvement in a differential Tau dephosphorylation on the full-length multiphosphorylated substrate.info:eu-repo/semantics/publishe

    Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies

    No full text
    International audienceA given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer’s disease, is a bona fide constituent of TNTs. This is important because Tau appears beside filamentous actin and myosin 10 as a specific marker of these fine protrusions of membranes and cytosol that are difficult to visualize. Furthermore, we observed that exogenous Tau species increase the number of TNTs established between primary neurons, thereby facilitating the intercellular transfer of Tau fibrils. In conclusion, Tau may contribute to the formation and function of the highly dynamic TNTs that may be involved in the prion-like propagation of Tau assemblies

    Tau story : des démences fronto-temporales aux autres tauopathies

    No full text
    Les protĂ©ines tau sont des protĂ©ines associĂ©es aux microtubules. Elles sont principalement exprimĂ©es dans les neurones. Il existe six isoformes de protĂ©ines tau dans le cerveau humain adulte gĂ©nĂ©rĂ©es par Ă©pissage alternatif Ă  partir d’un gĂšne unique situĂ© sur le chromosome 17. Ces protĂ©ines jouent un rĂŽle dans la polymĂ©risation et la stabilitĂ© des microtubules. Cette fonction est rĂ©gulĂ©e par l’état de phosphorylation des protĂ©ines tau. Dans de nombreuses maladies neurodĂ©gĂ©nĂ©ratives regroupĂ©es sous le terme tauopathies, des formes anormalement phosphorvlĂ©es d’isoformes de protĂ©ines tau s’agrĂšgent en filaments. La phosphorylation anormale et le rapport entre les diffĂ©rentes isoformes de protĂ©ines tau sont primordiaux dans l’étiopathogenĂšse de la dĂ©gĂ©nĂ©rescence neurofibrillaire. Ces facteurs peuvent ĂȘtre modulĂ©s de façon directe (ululations sur le gĂšne de tau dans certaines formes familiales de dĂ©mence fronto-temporale avec syndrome parkinsonien) ou indirecte (rĂ©pĂ©titions de triplets CTG dans la dystrophie myotonique de Steinert)
    corecore