6,267 research outputs found

    Dependability in Aggregation by Averaging

    Get PDF
    Aggregation is an important building block of modern distributed applications, allowing the determination of meaningful properties (e.g. network size, total storage capacity, average load, majorities, etc.) that are used to direct the execution of the system. However, the majority of the existing aggregation algorithms exhibit relevant dependability issues, when prospecting their use in real application environments. In this paper, we reveal some dependability issues of aggregation algorithms based on iterative averaging techniques, giving some directions to solve them. This class of algorithms is considered robust (when compared to common tree-based approaches), being independent from the used routing topology and providing an aggregation result at all nodes. However, their robustness is strongly challenged and their correctness often compromised, when changing the assumptions of their working environment to more realistic ones. The correctness of this class of algorithms relies on the maintenance of a fundamental invariant, commonly designated as "mass conservation". We will argue that this main invariant is often broken in practical settings, and that additional mechanisms and modifications are required to maintain it, incurring in some degradation of the algorithms performance. In particular, we discuss the behavior of three representative algorithms Push-Sum Protocol, Push-Pull Gossip protocol and Distributed Random Grouping under asynchronous and faulty (with message loss and node crashes) environments. More specifically, we propose and evaluate two new versions of the Push-Pull Gossip protocol, which solve its message interleaving problem (evidenced even in a synchronous operation mode).Comment: 14 pages. Presented in Inforum 200

    Spectra: Robust Estimation of Distribution Functions in Networks

    Get PDF
    Distributed aggregation allows the derivation of a given global aggregate property from many individual local values in nodes of an interconnected network system. Simple aggregates such as minima/maxima, counts, sums and averages have been thoroughly studied in the past and are important tools for distributed algorithms and network coordination. Nonetheless, this kind of aggregates may not be comprehensive enough to characterize biased data distributions or when in presence of outliers, making the case for richer estimates of the values on the network. This work presents Spectra, a distributed algorithm for the estimation of distribution functions over large scale networks. The estimate is available at all nodes and the technique depicts important properties, namely: robust when exposed to high levels of message loss, fast convergence speed and fine precision in the estimate. It can also dynamically cope with changes of the sampled local property, not requiring algorithm restarts, and is highly resilient to node churn. The proposed approach is experimentally evaluated and contrasted to a competing state of the art distribution aggregation technique.Comment: Full version of the paper published at 12th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS), Stockholm (Sweden), June 201

    Fast Distributed Computation of Distances in Networks

    Get PDF
    This paper presents a distributed algorithm to simultaneously compute the diameter, radius and node eccentricity in all nodes of a synchronous network. Such topological information may be useful as input to configure other algorithms. Previous approaches have been modular, progressing in sequential phases using building blocks such as BFS tree construction, thus incurring longer executions than strictly required. We present an algorithm that, by timely propagation of available estimations, achieves a faster convergence to the correct values. We show local criteria for detecting convergence in each node. The algorithm avoids the creation of BFS trees and simply manipulates sets of node ids and hop counts. For the worst scenario of variable start times, each node i with eccentricity ecc(i) can compute: the node eccentricity in diam(G)+ecc(i)+2 rounds; the diameter in 2*diam(G)+ecc(i)+2 rounds; and the radius in diam(G)+ecc(i)+2*radius(G) rounds.Comment: 12 page

    Estimating value at risk and optimal hedge ratio in Latin markets: a copula-based GARCH approach

    Get PDF
    In this paper we use a copula-based GARCH model to estimate conditional variances and covariances of the bivariate relationships between U.S. market with Brazilian, Argentinean and Mexican markets. To that we used daily prices of S&P500, Ibovespa, Merval and IPC from January 2009 to December 2010, totaling 483 observations. The results allows to conclude that both the volatility of Latin markets, such as its dependence with the U.S. decreased in the period, resulting in lower estimates for the VaR and Hedge, compared with those based on the unconditional variance and covariance, emphasizing that after theeffects of the 2007/2008 U.S. crisis, these Latin markets can again be considered as options for international diversification for investors with assets of the U.S. market in their portfolio.Value at risk, Hedge ratio, Copula, Latin markets

    Tratamento da gestação ectópica com metotrexate

    Get PDF
    Trabalho de ConclusĂŁo de Curso - Universidade Federal de Santa Catarina. Curso de Medicina. Departamento de Tocoginecologia

    L'évolution de la justice et du rôle des juges au Brésil

    Get PDF

    Approaches to Conflict-free Replicated Data Types

    Full text link
    Conflict-free Replicated Data Types (CRDTs) allow optimistic replication in a principled way. Different replicas can proceed independently, being available even under network partitions, and always converging deterministically: replicas that have received the same updates will have equivalent state, even if received in different orders. After a historical tour of the evolution from sequential data types to CRDTs, we present in detail the two main approaches to CRDTs, operation-based and state-based, including two important variations, the pure operation-based and the delta-state based. Intended as a tutorial for prospective CRDT researchers and designers, it provides solid coverage of the essential concepts, clarifying some misconceptions which frequently occur, but also presents some novel insights gained from considerable experience in designing both specific CRDTs and approaches to CRDTs.Comment: 36 page
    • …
    corecore