27 research outputs found

    Mutant N-RAS Protects Colorectal Cancer Cells from Stress-Induced Apoptosis and Contributes to Cancer Development and Progression

    Get PDF
    N-Ras is one member of a family of oncoproteins that are commonly mutated in cancer. Activating mutations in N-Ras occur in a subset of colorectal cancers, but little in known about how the mutant protein contributes to onset and progression of the disease. Using genetically engineered mice, we find that mutant N-Ras strongly promotes tumorigenesis in the context of inflammation. The pro-tumorigenic nature of mutant N-Ras is related to its anti-apoptotic function, which is mediated by activation of a non-canonical MAPK pathway that signals through Stat3. As a result, inhibition of MEK selectively induces apoptosis in autochthonous colonic tumors expressing mutant N-Ras. The translational significance of this finding is highlighted by our observation that NRAS mutation correlates with a less favorable clinical outcome for colorectal cancer patients. These data demonstrate for the first time the important role that N-Ras plays in colorectal cancer.

    Intricate macrophage-colorectal cancer cell communication in response to radiation

    Get PDF
    Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay. Overall, the establishment of primary human macrophage-cancer cell co-cultures revealed an intricate cell communication in response to ionizing radiation, which should be considered when developing therapies adjuvant to radiotherapy

    Causes and consequences of microsatellite instability in gastric carcinogenesis

    No full text

    KRAS

    No full text

    Lipid Nanoparticles Functionalized with Antibodies for Anticancer Drug Therapy

    No full text
    Nanotechnology takes the lead in providing new therapeutic options for cancer patients. In the last decades, lipid-based nanoparticles—solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), liposomes, and lipid–polymer hybrid nanoparticles—have received particular interest in anticancer drug delivery to solid tumors. To improve selectivity for target cells and, thus, therapeutic efficacy, lipid nanoparticles have been functionalized with antibodies that bind to receptors overexpressed in angiogenic endothelial cells or cancer cells. Most papers dealing with the preclinical results of antibody-conjugated nanoparticles claim low systemic toxicity and effective tumor inhibition, which have not been successfully translated into clinical use yet. This review aims to summarize the current “state-of-the-art” in anticancer drug delivery using antibody-functionalized lipid-based nanoparticles. It includes an update on promising candidates that entered clinical trials and some explanations for low translation success

    Rheological and Injectability Evaluation of Sterilized Poloxamer-407-Based Hydrogels Containing Docetaxel-Loaded Lipid Nanoparticles

    No full text
    Nanostructured lipid carriers (NLCs) have the potential to increase the bioavailability and reduce the side effects of docetaxel (DTX). However, only a small fraction of nanoparticles given intravenously can reach a solid tumor. In situ-forming gels combined with nanoparticles facilitate local administration and promote drug retention at the tumor site. Injectable hydrogels based on poloxamer 407 are excellent candidates for this hybrid nanoparticle–hydrogel system because of their thermoresponsive behavior and biocompatibility. Therefore, this work aimed to develop injectable poloxamer hydrogels containing NLCs for intratumoral delivery of DTX. To ensure sterility, the obtained hydrogels were autoclaved (121 °C for 15 min) after preparation. Then, the incorporation of NLCs into the poloxamer hydrogels and the impact of steam sterilization on the nanocomposite hydrogels were evaluated concerning sol–gel transition, injectability, and physicochemical stability. All formulations were extruded through the tested syringe–needle systems with acceptable force (2.2–13.4 N) and work (49.5–317.7 N·mm) of injection. Following steam sterilization, injection became easier in most cases, and the physicochemical properties of all hydrogels remained practically unchanged according to the spectroscopical and thermal analysis. The rheological evaluation revealed that the nanocomposite hydrogels were liquid at 25 °C and underwent rapid gelation at 37 °C. However, their sterilized counterparts gelled at 1–2 °C above body temperature, suggesting that the autoclaving conditions employed had rendered these nanocomposite hydrogels unsuitable for local drug delivery

    Mutant KRAS-Associated Proteome Is Mainly Controlled by Exogenous Factors

    No full text
    Understanding how mutant KRAS signaling is modulated by exogenous stimuli is of utmost importance to elucidate resistance mechanisms underlying pathway inhibition failure, and to uncover novel therapeutic targets for mutant KRAS patients. Hence, aiming at perceiving KRAS-autonomous versus -non autonomous mechanisms, we studied the response of two mutant KRAS colorectal cancer cell lines (HCT116 and LS174T) upon KRAS silencing and treatment with rhTGFβ1-activated fibroblasts secretome. A proteomic analysis revealed that rhTGFβ1-activated fibroblast-secreted factors triggered cell line-specific proteome alterations and that mutant KRAS governs 43% and 38% of these alterations in HCT116 and LS174T cells, respectively. These KRAS-dependent proteins were localized and displayed molecular functions that were common to both cell lines (e.g., extracellular exosome, RNA binding functions). Moreover, 67% and 78% of the KRAS-associated proteome of HCT116 and LS174T cells, respectively, was controlled in a KRAS-non-autonomous manner, being dependent on fibroblast-secreted factors. In HCT116 cells, KRAS-non-autonomously controlled proteins were mainly involved in proteoglycans in cancer, p53, and Rap1 signaling pathways; whereas in LS174T cells, they were associated with substrate adhesion-dependent cell-spreading and involved in metabolic processes. This work highlights the context-dependency of KRAS-associated signaling and reinforces the importance of integrating the tumor microenvironment in the study of KRAS-associated effects

    Dissecting the signaling pathways associated with the oncogenic activity of MLK3 P252H mutation

    Get PDF
    BACKGROUND: MLK3 gene mutations were described to occur in about 20% of microsatellite unstable gastrointestinal cancers and to harbor oncogenic activity. In particular, mutation P252H, located in the kinase domain, was found to have a strong transforming potential, and to promote the growth of highly invasive tumors when subcutaneously injected in nude mice. Nevertheless, the molecular mechanism underlying the oncogenic activity of P252H mutant remained elusive. METHODS: In this work, we performed Illumina Whole Genome arrays on three biological replicas of human HEK293 cells stably transfected with the wild-type MLK3, the P252H mutation and with the empty vector (Mock) in order to identify the putative signaling pathways associated with P252H mutation. RESULTS: Our microarray results showed that mutant MLK3 deregulates several important colorectal cancer- associated signaling pathways such as WNT, MAPK, NOTCH, TGF-beta and p53, helping to narrow down the number of potential MLK3 targets responsible for its oncogenic effects. A more detailed analysis of the alterations affecting the WNT signaling pathway revealed a down-regulation of molecules involved in the canonical pathway, such as DVL2, LEF1, CCND1 and c-Myc, and an up-regulation of DKK, a well-known negative regulator of canonical WNT signaling, in MLK3 mutant cells. Additionally, FZD6 and FZD10 genes, known to act as negative regulators of the canonical WNT signaling cascade and as positive regulators of the planar cell polarity (PCP) pathway, a non-canonic WNT pathway, were found to be up-regulated in P252H cells. CONCLUSION: The results provide an overall view of the expression profile associated with mutant MLK3, and they support the functional role of mutant MLK3 by showing a deregulation of several signaling pathways known to play important roles in the development and progression of colorectal cancer. The results also suggest that mutant MLK3 may be a novel modulator of WNT signaling, and pinpoint the activation of PCP pathway as a possible mechanism underlying the invasive potential of MLK3 mutant cells
    corecore