23 research outputs found

    GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations

    Full text link
    In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems

    Glyphosate-based herbicides potently affect cardiovascular system in mammals: review of the literature

    No full text
    In glyphosate (G)-based herbicides (GBHs), the declared active principle G is mixed with several adjuvants that help it to penetrate the plants’ cell membranes and its stabilization and liposolubility. Its utilization is growing with genetically modified organisms engineered to tolerate GBH. Millions of farmers suffer poisoning and death in developing countries, and occupational exposures and suicide make GBH toxicity a worldwide concern. As GBH is found in human plasma, widespread hospital facilities for measuring it should be encouraged. Plasma determination is an essential prerequisite for risk assessment in GBH intoxication. Only when standard ECGs were performed, at least one abnormal ECG was detected in the large majority of cases after intoxication. QTc prolongation and arrhythmias along with first-degree atrioventricular block were observed after GBH intoxication. Thus, life-threatening arrhythmias might be the cause of death in GBH intoxication. Cardiac cellular effects of GBH were reviewed along with few case reports in men and scanty larger studies. We observed in two mammalian species (rats and rabbits) direct cardiac electrophysiological changes, conduction blocks and arrhythmias among GBH-mediated effects. Plasmatic (and urine) level determinations of G and electrocardiographic Holter monitoring seem warranted to ascertain whether cardiovascular risk among agro-alimentary workers might be defined

    Will the Public Ever Accept Genetically Engineered Plants?

    No full text
    corecore