24 research outputs found

    Analyse protéomique de la voie endocytaire de Trypanosoma cruzi et Caractérisation de lectine de type C chez Trypanosoma cruzi et Trypanosoma brucei brucei

    No full text
    Le trypanosome sud américain, Trypanosoma cruzi, transmis par un insecte hématophage de type triatome est le protozoaire connus pour causer la maladie de Chagas chez l’Homme. Le cycle de vie de ce parasite alterne à la fois sur le type d’hôte, insecte ou hôte vertébré, et sur la forme :trypomastigote pour la forme quiescente et amastigote et épimastigote pour les formes prolifératives. Concernant la forme, seuls les parasites épimastigotes évoluent et prolifèrent dans le tube digestif des triatomes et possèdent un système endocytaire actif nécessaire à leur besoin énergétique. Toutefois, cette endocytose est restreinte à deux sites membranaires, la poche flagellaire et le cytostome, à partir desquels se créent des cargos endocytaires. Ces cargos endocytaires fusionnent ensuite avec un réseau vésiculaire endosomal qui délivre son contenu dans des réservosomes, compartiments similaires aux lysosomes.Chez le trypanosome africain (Trypanosoma brucei brucei), l’endocytose ne se réalise qu’au niveau de la poche flagellaire. Certaines protéines appartenant à cette voie endocytaire sont modifiées par de longues chaines de résidus poly-N-acétyllactosamine (pNAL) de manière post-traductionnelle. Initialement, il a été proposé que ces résidus puissent agir en tant que signal de tri dans le processus d’endocytose chez ces parasites.En nous basant sur les travaux qui ont été réalisés chez le trypanosome africain, nous nous sommes proposés d’approfondir les connaissances sur la voie endocytaire du trypanosome sud américain (Trypanosoma cruzi) qui est beaucoup moins étudié. Pour ce faire, à l’aide de deux lectines, la tomatolectine et la lectine de Griffonia simplicifolia qui présentent respectivement une affinité pour les résidus pNAL et les résidus N-acétylglucosamine (GlcNAc) en fin de chaine, nous avons pu enrichir et caractériser par LC-MS², 173 glycoprotéines putatives dont plus de 13% sont localisées dans la voie endocytaire. Parmi les protéines identifiées, en plus des nombreuses hydrolases lysosomiales, nous avons pu identifier une lectine de type C localisée dans la partie antérieure des parasites, au niveau des principaux sites endocytaires. Cette dernière possédant de nombreux résidus en commun avec les récepteurs de type scavengers, elle pourrait donc jouer un rôle important dans la fixation et l’endocytose de certains nutriments.Nos travaux ont ainsi permis d’établir que similairement aux trypanosomes africains, Trypanosoma cruzi possèdent des glycoprotéines modifiées par des N-glycanes contenant des pNAL. Nos travaux ont également permis d’établir que ces résidus s’associent préférentiellement aux glycoprotéines de la voie endocytaire (au niveau du cytostome et du réservosome) de la forme épimastigote. L’ensemble des résultats obtenus durant cette thèse tendent à montrer que les résidus pNAL des glycoprotéines présentes dans la voie endocytaire ont été conservées entre les deux parasites étudiés (Trypanosoma cruzi et Trypanosoma brucei brucei).Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Identification and preliminary characterization of a putative C-type lectin receptor-like protein in the T. cruzi tomato lectin endocytic-enriched proteome

    No full text
    Trypanosoma cruzi, the etiological agent of the Chagas’ disease in Latin America undergoes a complex life cycle involving two hosts, a mammalian host and a reduviid insect vector (triatomine). In the insect midgut the parasite multiplies as epimastigote forms, which rely on endocytosis for their energy requirement. We recently showed that posttranslational modification of endocytic N-glycoproteins by tomato lectin (TL) binding-N-glycans is crucial for receptor-mediated endocytosis (RME) in epimastigote forms. In an attempt to characterize the endocytic proteome we used a TL affinity chromatography, which significantly enriched glycoproteins of the trypanosomal endocytic pathway. In addition to various lysosomal hydrolases, we found an endosomal C-type lectin-like protein, which displays some structural and topological characteristics of the mammalian lectin receptor superfamily. This lectin encoding a large transmembrane protein of around 375 kDa contained three putative extracellular N-terminal C-type lectin domains (CTLD) and located inside the flagellar pocket (FP)/cytostome and endosomal compartments of the insect stage of the parasite and on the surface of the plasma membrane of intracellular amastigote parasites. Noteworthy, this endogenous lectin displayed similar sugar-binding specificity to that of TL and therefore could be important in either the N-glycan mediated endocytosis or parasite adhesion to host cells. We postulated that during the evolution of trypanosomatids, genes encoding lectin harboring 3 CTDLs represent an old acquisition present in free-living, monoxenic and heteroxenic trypanosomatids, which would have been secondarily lost in extracellular parasites from the T. brucei clade.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Specific endocytosis blockade of Trypanosoma cruzi exposed to a poly-LAcNAc binding lectin suggests that lectin-sugar interactions participate to receptor-mediated endocytosis

    No full text
    Trypanosoma cruzi is a protozoan parasite transmitted by a triatomine insect, and causing human Chagas disease in South America. This parasite undergoes a complex life cycle alternating between non-proliferative and dividing forms. Owing to their high energy requirement, replicative epimastigotes of the insect midgut display high endocytic activity. This activity is mainly restricted to the cytostome, by which the cargo is taken up and sorted through the endosomal vesicular network to be delivered to reservosomes, the final lysosomal-like compartments. In African trypanosomes tomato lectin (TL) and ricin, respectively specific to poly-N-acetyllactosamine (poly-LacNAc) and β-D-galactose, allowed the identification of giant chains of poly-LacNAc in N-glycoproteins of the endocytic pathway. We show that in T. cruzi epimastigote forms also, glycoproteins of the endocytic pathway are characterized by the presence of N-linked glycans binding to both ricin and TL. Affinity chromatography using both TL and Griffonia simplicifolia lectin II (GSLII), specific to nonreducing terminal residue of N-acetylglucosamine (GlcNAc), led to an enrichment of glycoproteins of the trypanosomal endocytic pathway. Incubation of live parasites with TL, which selectively bound to the cytostome/cytopharynx, specifically inhibited endocytosis of transferrin (Tf) but not dextran, a marker of fluid endocytosis. Taken together, our data suggest that N-glycan modification of endocytic components plays a crucial role in receptor-mediated endocytosis of T. cruzi.SCOPUS: ar.jinfo:eu-repo/semantics/inPres

    TL blotting on Tf and glycophorin.

    No full text
    <p>Different amounts of proteins (up to 5 μg) were loaded. The lectin blot analysis indicates that TL does not recognize Tf but reacts with the sialoglycoprotein glycophorin.</p

    Localization of TL and GSLII binding sites in <i>T</i>. <i>cruzi</i>.

    No full text
    <p>Endocytosis kinetics of fluorescent Alexa Fluor 594 conjugated Tf was performed in order to follow <i>T</i>. <i>cruzi</i> endocytic pathway from the flagellar pocket/cytostome to the reservosomes. Parasites were fixed at different time points and probed with biotinylated TL (A), biotinylated ricin (B) or Alexa 488 conjugated GSLII (C). The addition of chitin hydrolysate clearly shows inhibition of TL and GSLII staining. (A) Co-localization of biotinylated-TL (green) and Tf (red). (B) Co-localization of biotinylated-ricin (green) and Tf (red). Addition of 200 mM galactose abolished the ricin staining. (C) Co-localization of Alexa 488 conjugated GSLII (green) and Tf (red). (D) Co-localization of Alexa 488 conjugated GSLII (green) and TcJ6 (red). (E) Co-localization of Alexa 488 conjugated GSLII (green) and anti-BiP (red). (F) GSLII blotting of cell extracts enriched by GSLII chromatography. GSLII blots of <i>T</i>. <i>cruzi</i> CHAPS- and Triton-soluble (CHAPS+Triton X-114) cell lysate fractions were enriched by GSLII chromatography and then treated (+) or not (-) with PNGase F. Blots were probed with biotinylated-GSLII. The GSLII blot indicates the presence of <i>N-</i>acetylglucosamine modification in both soluble and membrane fractions. Treatment of the fractions with PNGase F decreased the reactivity of GSLII confirming <i>N</i>-glycoprotein type modification.</p

    Subcellular localization of TL-binding sites in <i>T cruzi</i> by transmission electron microscopy (TEM).

    No full text
    <p>Parasites were incubated for 5 min in PSG medium in presence (F) or absence (A-E) of BSA-gold as endocytic tracer (10 nm). Cells were fixed and processed for ultrathin frozen sectioning (Tokayasu method, [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0163302#pone.0163302.ref042" target="_blank">42</a>]). Cryosections were sequentially probed with biotinylated TL, rabbit anti-biotin antibodies, protein A-gold (5 nm) and finally mounted in methyl cellulose-uranyl acetate films. Representative images are shown. K: kinetoplast, M: mitochondrion, R: reservosome, N: nucleus, FP: flagellar pocket, F: flagellum, G: golgi, Cy: cytostome. Arrows and arrowhead, point to gold particles that mark the presence of TL binding sites and BSA-gold particles, respectively. Asterisk show TL-binding matrix near the opening of the cytostome. Bars = 200 nm.</p

    Tomato lectin blotting and fluorescence microscopy analyses.

    No full text
    <p>(A) TL blotting on total protein extracts of three developmental forms of <i>T</i>. <i>cruzi</i>. Similar amounts of proteins (around 50 μg) from three <i>T</i>. <i>cruzi</i> stages were loaded (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0163302#sec002" target="_blank">Material and Methods</a>). The same membrane blot was revealed with ponceau red as loading control. The lectin blot analyses indicate that TL-binding glycoproteins are significantly present in epimastigote forms. E: epimastigote, T: trypomastigote, A: amastigote. (B) Fluorescence microscopy of three developmental forms of <i>T</i>. <i>cruzi</i> probed with biotinylated tomato lectin. Arrows indicate the position of nucleus (N) and kinetoplast (K) stained in blue by DAPI. E: epimastigote; M: metacyclic, T: trypomastigote, A: amastigote. Bars scales represent 2μm. (C) TL blotting on total extract of <i>T</i>. <i>brucei</i> bloodstream forms (10<sup>6</sup> cells) vs <i>T</i>. <i>cruzi</i> epimastigote forms (5 x10<sup>6</sup> cells). (D) TL blots of <i>T</i>. <i>cruzi</i> CHAPS- and Triton-soluble (CHAPS+Triton X-114) cell lysate fractions. Fractions were enriched by TL chromatography and then treated (+) or not (-) with PNGase F and T represents the total cell lysate. Blots were either probed with TL (upper panel) or anti-TcrCATL (lower panel). The TL blot indicates the presence of <i>N</i>-glycan modification in both soluble and membrane fractions. Treatment of the fractions with PNGase F abolished the reactivity of TL confirming <i>N</i>-glycoprotein type modification. The lower panel shows the presence of TcrCATL, a poly-LacNAc-modified glycoprotein, in both fractions. PNGase F treatment results in the appearance of a lower band corresponding to the loss of the N-glycosylation. Apparent molecular weights are indicated in kDa on the left.</p

    Inhibition of uptake of Tf by TL in epimastigote forms of <i>T</i>. <i>cruzi</i>.

    No full text
    <p>Trypanosomes preincubated with biotinylated TL in the presence of 20 μM FMK-024 (25 μg/ml) and in the absence (A, left panel) or presence of competing chitin hydrolysate (A, right panel), were then incubated with Tf Alexa-594 for 5 or 30 min at 27°C. Cells were then fixed and treated for fluorescence microscopy. Similar incubations wherein TL was substituted by GSLII (B) were performed to assess the specificity of the TL labeling. Furthermore, live parasites preincubated with DyLight 488-TL and 20 μM protease inhibitor (FMK-024) for 5 min and then incubated for 60 min in the presence of Alexa Fluor 594 conjugated Tf showed a lectin labeling in the cytostome/cytopharynx (arrowhead), while no Tf labeling (red signal) was observed in these conditions (C, upper panel). In presence of a molar excess of chitin hydrolysate an intense labeling of Tf exclusively concentrate into reservosomes (arrow) while no green signal corresponding to TL was observed anymore (C, lower panel). Inhibition of trypanosomes Tf uptake with TL was furthermore quantified by flow cytometry (D). The TL signal was dropping from 913 to 273 of mfi in the absence or presence of chitin hydrolysate, respectively (D, left histogram). Conversely, Tf signal was increasing from 597 to 3793 of mfi in the absence or presence of chitin hydrolysate, respectively (D, right histogram).</p

    Uptake of Dextran in the presence of TL in epimastigote forms of <i>T</i>. <i>cruzi</i>.

    No full text
    <p>Flow cytometry profiles of uptake of Dextran Alexa-647 by trypanosomes in the presence or absence of biotinylated TL. Trypanosomes preincubated (A) or not (B) with biotinylated TL in the presence of 20 μM FMK-024 (25 μg/ml) and in absence (A, left histogram) or presence of competing chitin hydrolysate (A, right histogram), were then incubated with Dextran Alexa-647 for 30 min at 27°C.</p
    corecore