21 research outputs found

    Chemical Insights from High-Resolution X-ray Photoelectron Spectroscopy and ab Initio Theory: Propyne, Trifluoropropyne, and Ethynylsulfur Pentafluoride

    Get PDF
    High-resolution carbon 1s photoelectron spectroscopy of propyne (HC=CH3) shows a spectrum in which the contributions from the three chemically inequivalent carbons are clearly resolved and marked by distinct vibrational structure. This structure is well accounted for by ab initio theory. For 3,3,3-trifluoropropyne (HC=CF3) and ethynylsulfur pentafluoride (HC=SF5), the ethynyl carbons show only a broad structure and have energies that differ only slightly from one another. The core-ionization energies can be qualitatively understood in terms of conventional resonance structures; the vibrational broadening for the fluorinated compounds can be understood in terms of the effects of the electronegative fluorines on the charge distribution. Combining the experimental results with gas-phase acidities and with ab initio calculations provides insights into the effects of initial-state charge distribution and final-state charge redistribution on ionization energies and acidities. In particular, these considerations make it possible to understand the apparent paradox that SF5 and CF3 have much larger electronegativity effects on acidity than they have on carbon 1s ionization energies

    Vibrationally resolved photoelectron spectra of the carbon 1s and nitrogen 1s shells in hydrogen cyanide

    No full text
    Vibrational structures of the C1s and N1s photoelectron spectra of gas-phase HCN have been investigated using monochromated third-generation synchrotron radiation. Both spectra exhibit resolved fine structure associated with several vibrationally excited states. In the C1s spectrum a single vibrational progression is observed, while the N1s spectrum is more complex. High-level ab initio calculations were performed to simulate the spectra and the agreement with the experimental results is good. Based on the calculations, the C1s ionisation is found to induce vibrations solely in the C≡N stretching mode with an energy of 280 meV, while the N1s ionisation generates vibrations also in the C-H stretching mode with an energy of about 387 meV, as well as combinations of these two modes
    corecore