11 research outputs found

    Unmasking features of the auto-epitope essential for β(1)-adrenoceptor activation by autoantibodies in chronic heart failure

    Get PDF
    AIMS: Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β(1)-adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine-map the conformational epitope within the second extracellular loop of the human β(1)-adrenoceptor (β(1) EC(II)) that is targeted by stimulating β(1)-receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto-epitope. METHODS AND RESULTS: Non-conserved amino acids within the β(1) ECII loop (compared with the amino acids constituting the ECII loop of the β(2)-adrenoceptor) were one by one replaced with alanine; potential intra-loop disulfide bridges were probed by cysteine-serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β(1) ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β(1)-adrenoceptors bearing corresponding point mutations. With the use of stimulating β(1)-receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β(1) ECII loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK(211-214) motif and (ii) the intra-loop disulfide bond C(209)↔C(215). Of note, aberrant intra-loop disulfide bond C(209)↔C(216) almost fully disrupted the functional auto-epitope in cyclopeptides. CONCLUSIONS: The conformational auto-epitope targeted by cardio-pathogenic β(1)-receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β(1) EC(II) loop bearing the NDPK(211-214) motif and the C(209)↔C(215) bridge while lacking cysteine C(216). Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β(1)-autoantibody-positive CHF

    Monitoring and prediction in Early Warning Systems (EWS) for rapid mass movements

    No full text
    Rapid mass movements (RMM) pose a substantial risk to people and infrastructure. Reliable and cost-efficient measures have to be taken to reduce this risk. One of these measures includes establishing and advancing the State of Practice in the application of Early Warning Systems (EWS). EWS have been developed during the past decades and are rapidly increasing. In this document, we focus on the technical part of EWS, i.e. the prediction and timely recognition of imminent hazards, as well as on monitoring slopes at risk and released mass movements. Recent innovations in assessing spatial precipitation, as well as monitoring and modelling precursors, the triggering and deformation of RMM offer new opportunities for next-generation EWS. However, technical advancement can only be transferred into more reliable, operational EWS with an intense dialog between scientists, engineers and those in charge of warning. To this end, further experience with new comprehensive prototype systems jointly operated by scientists and practitioners will be essential

    Monitoring and prediction in early warning systems for rapid mass movements

    Get PDF
    Rapid mass movements (RMM) pose a substantial risk to people and infrastructure. Reliable and cost-efficient measures have to be taken to reduce this risk. One of these measures includes establishing and advancing the state of practice in the application of early warning systems (EWSs). EWSs have been developed during the past decades and are rapidly increasing. In this paper, we focus on the technical part of EWSs, i.e., the prediction and timely recognition of imminent hazards, as well as on monitoring slopes at risk and released mass movements. Recent innovations in assessing spatial precipitation, monitoring and precursors of the triggering and deformation of RMM offer new opportunities for next-generation EWSs. However, technical advancement can only be transferred into more reliable, operational EWSs with an adequate well-instructed dedicated staff. To this end, an intense dialog between scientists, engineers and those in charge of warning, as well as further experience with new comprehensive prototype systems jointly operated by scientists and practitioners, will be essential
    corecore