16 research outputs found
Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer
We study ground-state properties of a two-site, two-electron Holstein model
describing two molecules coupled indirectly via electron-phonon interaction by
using both exact diagonalization and self-consistent diagrammatic many-body
perturbation theory. The Hartree and self-consistent Born approximations used
in the present work are studied at different levels of self-consistency. The
governing equations are shown to exhibit multiple solutions when the
electron-phonon interaction is sufficiently strong whereas at smaller
interactions only a single solution is found. The additional solutions at
larger electron-phonon couplings correspond to symmetry-broken states with
inhomogeneous electron densities. A comparison to exact results indicates that
this symmetry breaking is strongly correlated with the formation of a bipolaron
state in which the two electrons prefer to reside on the same molecule. The
results further show that the Hartree and partially self-consistent Born
solutions obtained by enforcing symmetry do not compare well with exact
energetics, while the fully self-consistent Born approximation improves the
qualitative and quantitative agreement with exact results in the same symmetric
case. This together with a presented natural occupation number analysis
supports the conclusion that the fully self-consistent approximation describes
partially the bipolaron crossover. These results contribute to better
understanding how these approximations cope with the strong localizing effect
of the electron-phonon interaction.Comment: 9 figures, corrected typo
Kadanoff-Baym approach to double-excitations in finite systems
We benchmark many-body perturbation theory by studying neutral, as well as
non-neutral, excitations of finite lattice systems. The neutral excitation
spectra are obtained by time-propagating the Kadanoff-Baym equations in the
Hartree-Fock and second Born approximations. Our method is equivalent to
solving the Bethe-Salpeter equation with a high-level kernel while respecting
self-consistently, which guarantees the fulfillment of a frequency sum rule. As
a result, we find that a time-local method, such as Hartree-Fock, can give
incomplete spectra, while already the second Born, which is the simplest
time-nonlocal approximation, reproduces well most of the additional
excitations, which are characterized as double-excitations.Comment: 20 pages, 10 figure
Benchmarking semiclassical and perturbative methods for real-time simulations of cavity-bound emission and interference
We benchmark a selection of semiclassical and perturbative dynamics techniques by investigating the correlated evolution of a cavity-bound atomic system to assess their applicability to study problems involving strong light-matter interactions in quantum cavities. The model system of interest features spontaneous emission, interference, and strong coupling behavior and necessitates the consideration of vacuum fluctuations and correlated light-matter dynamics. We compare a selection of approximate dynamics approaches including fewest switches surface hopping (FSSH), multitrajectory Ehrenfest dynamics, linearized semiclassical dynamics, and partially linearized semiclassical dynamics. Furthermore, investigating self-consistent perturbative methods, we apply the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the second Born approximation. With the exception of fewest switches surface hopping, all methods provide a reasonable level of accuracy for the correlated light-matter dynamics, with most methods lacking the capacity to fully capture interference effects
Probing Strongly Correlated Materials in Non-equilibrium: Basic Concepts and Possible Future Trends in First Principle Approaches
Time-resolved spectroscopy has an emerging role among modern material-characterization techniques. Two powerful theoretical formalisms for systems out of equilibrium (and thus for time-resolved spectroscopy) are Non-Equilibrium Green’s Functions (NEGF) and Time-Dependent Density Functional Theory (TDDFT). In this chapter, we offer a perspective (with more emphasis on the NEGF) on their current capability to deal with the case of strongly correlated materials. To this end, the NEGF technique is briefly presented, and its use in time-resolved spectroscopy highlighted. We then show how a linear response description is recovered from NEGF real-time dynamics. This is followed by a review of a recent ab initio NEGF treatment and by a short introduction to TDDFT. With these background notions, we turn to the problem of describing strong correlation effects by NEGF and TDDFT. This is done in terms of model Hamiltonians: using simple lattice systems as benchmarks, we illustrate to what extent NEGF and TDDFT can presently describe complex materials out of equilibrium and with strong electronic correlations. Finally, an outlook is given on future trends in NEGF and TDDFT research of interest to time-resolved spectroscopy