5 research outputs found

    Acetylation of C/EBP alpha inhibits its granulopoietic function

    Get PDF
    CCAAT/enhancer-binding protein alpha (C/EBP alpha) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBP alpha at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBP alpha DNA-binding ability and modulates C/EBP alpha transcriptional activity. Acetylated C/EBP alpha is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)-mediated granulocytic differentiation of 32Dcl3 cells. C/EBP alpha mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBP alpha-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBP alpha and demonstrate the importance of C/EBP alpha acetylation in myeloid differentiation

    Activating Organic Phosphorescence via Heavy Metal–π Interaction Induced Intersystem Crossing

    No full text
    Heavy‐atom‐containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface‐bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid‐state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)2_{2}) as a triplet sensitizer and electron‐deficient 1,4,5,8‐naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room‐temperature phosphorescence confined in the low‐lying, long‐lived triplet state of NDIs with photoluminescence (PL) quantum yield (ΦPL_{PL}) exceeding 25% and a phosphorescence lifetime (τPh_{Ph}) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin–orbital coupling between the constituents

    Acetylation of C/EBPα inhibits its granulopoietic function

    Get PDF
    CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor for myeloid lineage commitment. Here we demonstrate that acetylation of C/EBPα at lysine residues K298 and K302, mediated at least in part by general control non-derepressible 5 (GCN5), impairs C/EBPα DNA-binding ability and modulates C/EBPα transcriptional activity. Acetylated C/EBPα is enriched in human myeloid leukaemia cell lines and acute myeloid leukaemia (AML) samples, and downregulated upon granulocyte-colony stimulating factor (G-CSF)- mediated granulocytic differentiation of 32Dcl3 cells. C/EBPα mutants that mimic acetylation failed to induce granulocytic differentiation in C/EBPα-dependent assays, in both cell lines and in primary hematopoietic cells. Our data uncover GCN5 as a negative regulator of C/EBPα and demonstrate the importance of C/EBPα acetylation in myeloid differentiation
    corecore