204 research outputs found

    Predictions and rewards affect decision-making but not subjective experience

    Get PDF
    To survive, organisms constantly make decisions to avoid danger and maximize rewards in information-rich environments. As a result, decisions about sensory input are not only driven by sensory information but also by other factors, such as the expected rewards of a decision (known as the payoff matrix) or by information about temporal regularities in the environment (known as cognitive priors or predictions). However, it is unknown to what extent these different types of information affect subjective experience or whether they merely result in nonperceptual response criterion shifts. To investigate this question, we used three carefully matched manipulations that typically result in behavioral shifts in decision criteria: a visual illusion (Müller-Lyer condition), a punishment scheme (payoff condition), and a change in the ratio of relevant stimuli (base rate condition). To gauge shifts in subjective experience, we introduce a task in which participants not only make decisions about what they have just seen but are also asked to reproduce their experience of a target stimulus. Using Bayesian ordinal modeling, we show that each of these three manipulations affects the decision criterion as intended but that the visual illusion uniquely affects sensory experience as measured by reproduction. In a series of follow-up experiments, we use computational modeling to show that although the visual illusion results in a distinct drift-diffusion (DDM) parameter profile relative to nonsensory manipulations, reliance on DDM parameter estimates alone is not sufficient to ascertain whether a given manipulation is perceptual or nonperceptual.</p

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH &lt; 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 &lt; κλ &lt; 6.9 and −0.5 &lt; κ2V &lt; 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Performance and calibration of quark/gluon-jet taggers using 140 fb⁻¹ of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s=13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    Search for resonant production of dark quarks in the dijet final state with the ATLAS detector

    Get PDF
    This paper presents a search for a new Z′ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at s \sqrt{s} s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z′ to dark quarks as a function of the Z′ mass for various dark-quark scenarios

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton-proton collision data recorded at √(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ψ → ee and radiative Z-boson decays

    Study of high-transverse-momentum Higgs boson production in association with a vector boson in the qqbb final state with the ATLAS detector

    Get PDF
    This Letter presents the first study of Higgs boson production in association with a vector boson ( V = W or Z ) in the fully hadronic q q b b final state using data recorded by the ATLAS detector at the LHC in proton-proton collisions at √ s = 13     TeV and corresponding to an integrated luminosity of 137     fb − 1 . The vector bosons and Higgs bosons are each reconstructed as large-radius jets and tagged using jet substructure techniques. Dedicated tagging algorithms exploiting b -tagging properties are used to identify jets consistent with Higgs bosons decaying into b ¯ b . Dominant backgrounds from multijet production are determined directly from the data, and a likelihood fit to the jet mass distribution of Higgs boson candidates is used to extract the number of signal events. The V H production cross section is measured inclusively and differentially in several ranges of Higgs boson transverse momentum: 250–450, 450–650, and greater than 650 GeV. The inclusive signal yield relative to the standard model expectation is observed to be μ = 1.4 + 1.0 − 0.9 and the corresponding cross section is 3.1 ± 1.3 ( stat ) + 1.8 − 1.4 ( syst )     pb

    Search for the exclusive W boson hadronic decays W± → π±γ , W± → K±γ and W± → ρ±γ with the ATLAS detector

    Get PDF
    A search for the exclusive hadronic decays W± → π±γ, W± → K±γ, and W± → ρ±γ is performed using up to 140 fb−1 of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of √s = 13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products. The search results in the most stringent upper limits to date on the branching fractions B(W± → π±γ) &lt; 1.9 × 10−6, B(W± → K±γ) &lt; 1.7 × 10−6, B(W± → ρ±γ) &lt; 5.2 × 10−6 at 95% confidence level

    Evidence of pair production of longitudinally polarised vector bosons and study of CP properties in ZZ → 4ℓ events with the ATLAS detector at √s = 13 TeV

    Get PDF
    A study of the polarisation and CP properties in ZZ production is presented. The used data set corresponds to an integrated luminosity of 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The ZZ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised Z bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be 2.45 ± 0.60 fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings

    Statistical combination of ATLAS Run 2 searches for charginos and neutralinos at the LHC

    Get PDF
    Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using 139  fb−1 of pp collision data at √s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or Higgsino production decaying via standard model W, Z, or h bosons are combined to extend the mass reach to the produced supersymmetric particles by 30–100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% C.L. cross-section upper limits by 15%–40%
    corecore