51 research outputs found

    Non-calorimetric determination of absorbed power during magnetic nanoparticle based hyperthermia

    Get PDF
    Nanomagnetic hyperthermia (NMH) is intensively studied with the prospect of cancer therapy. A major challenge is to determine the dissipated power during in vivo conditions and conventional methods are either invasive or inaccurate. We present a non-calorimetric method which yields the heat absorbed during hyperthermia: it is based on accurately measuring the quality factor change of a resonant radio frequency circuit which is employed for the irradiation. The approach provides the absorbed power in real-time, without the need to monitor the sample temperature as a function of time. As such, it is free from the problems caused by the non-adiabatic heating conditions of the usual calorimetry. We validate the method by comparing the dissipated power with a conventional calorimetric measurement. We present the validation for two types of resonators with very different filling factors: a solenoid and a so-called birdcage coil. The latter is a volume coil, which is generally used in magnetic resonance imaging (MRI) under in vivo condition. The presented method therefore allows to effectively combine MRI and thermotherapy and is thus readily adaptable to existing imaging hardware.Comment: 7 pages, 3 figures+Supplementary Material (2 pages, 3 figures

    Ultrafast sensing of photoconductivity decay using microwave resonators

    Get PDF
    Microwave reflectance probed photoconductivity (or Îź\mu-PCD) measurement represents a contactless and non-invasive method to characterize impurity content in semiconductors. Major drawbacks of the method include a difficult separation of reflectance due to dielectric and conduction effects and that the Îź\mu-PCD signal is prohibitively weak for highly conducting samples. Both of these limitations could be tackled with the use of microwave resonators due to the well-known sensitivity of resonator parameters to minute changes in the material properties combined with a null measurement. A general misconception is that time resolution of resonator measurements is limited beyond their bandwidth by the readout electronics response time. While it is true for conventional resonator measurements, such as those employing a frequency sweep, we present a time-resolved resonator parameter readout method which overcomes these limitations and allows measurement of complex material parameters and to enhance Îź\mu-PCD signals with the ultimate time resolution limit being the resonator time constant. This is achieved by detecting the transient response of microwave resonators on the timescale of a few 100 ns \emph{during} the Îź\mu-PCD decay signal. The method employs a high-stability oscillator working with a fixed frequency which results in a stable and highly accurate measurement.Comment: 7 pages, 6 figures+Supplementary Material

    Arterial stiffness may predict renal and cardiovascular prognosis in autosomal-dominant polycystic kidney disease

    Get PDF
    Background and aims Autosomal-dominant polycystic kidney disease (ADPKD) is one of the most common causes of end-stage renal disease (ESRD). The most important cause of death among ADPKD patients is cardiovascular (CV). The aim of this study was to examine the prognostic significance of arterial stiffness on CV and renal outcomes in ADPKD. Methods A total of 55 patients with ADPKD were examined. Pulse wave velocity was determined and stiffness index (SIDVP) was calculated. Combined primary endpoints (CV and renal) were major CV events (myocardial infarction, stroke, and CV intervention) as CV endpoints, and attaining of ESRD or start of renal replacement therapy as renal endpoints. Secondary endpoints were CV or renal endpoints separately. Results The mean age of those 55 ADPKD patients was 45 ± 12 years, 21 patients were male. The average value of the SIDVP was 11.11 ± 2.22 m/s. The patients were divided into two groups by the cutoff value of 11 m/s of SIDVP and then outcomes were analyzed. In the higher arterial stiffness group (SIDVP > 11 m/s), occurrence of combined primary endpoint (CV and renal) was significantly higher than in the group with more elastic arteries (p = 0.033). A statistically significant difference was found in the renal endpoints (p = 0.018), but not in the CV endpoints (p = 0.952) between the two groups. Conclusions Increased arterial stiffness predicts the onset of ESRD in ADPDK. Assessment of SIDVP appears to be a useful method for estimating the renal and CV prognosis in ADPKD

    Új és hagyományos irányok a gyermekkori akut lymphoblastos leukaemia biológiájában és ellátásában

    Get PDF
    Owing to clinical trials and improvement over the past few decades, the majority of children with acute lymphoblastic leukemia (ALL) survive by first-line chemotherapy and combat with the problems of returning to community. However, many patients may have severe acute or late therapeutic side effects, and the survival rate in some groups (e.g., patients with MLL rearrangements, hypodiploidy, IKZF1 mutation or early precursor T cell phenotype) is far behind the average. Innovative strategies in medical attendance provide better clinical outcomes for them: complete gene diagnostics, molecularly targeted anticancer treatment, immuno-oncology and immune cell therapy. The number of genes with identified alterations in leukemic lymphoblasts is over thirty and their pathobiologic role is only partly clear. There are known patient groups where the use of specific drugs is based on gene expression profiling (e.g., tyrosine kinase inhibitors in Philadelphia-like B-cell ALL). The continuous assessment of minimal residual disease became a routine due to the determination of a leukemia-associated immunophenotype by flow cytometry or a sensitive molecular marker by molecular genetics at diagnosis. Epitopes of cluster differentiation antigens on blast surface (primarily CD19, CD20 and CD22 on malignant B cells) can be attacked by monoclonal antibodies. Moreover, antitumor immunity can be strengthened utilizing either cell surface markers (bispecific T cell engagers, chimeric antigen receptor T cell therapy) or tumor-specific immune cells (immune checkpoint inhibitors). This review gives an insight into current knowledge in these innovative therapeutic directions. Orv Hetil. 2018; 159(20): 786-797

    Complexity of equational theory of relational algebras with standard projection elements

    Get PDF
    The class TPA\mathsf{TPA} of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of TPA\mathsf{TPA} nor the first order theory of TPA\mathsf{TPA} are decidable. Moreover, we show that the set of all equations valid in TPA\mathsf{TPA} is exactly on the Π11\Pi ^1_1 level. We consider the class TPA−\mathsf{TPA}^- of the relation algebra reducts of TPA\mathsf{TPA}’s, as well. We prove that the equational theory of TPA−\mathsf{TPA}^- is much simpler, namely, it is recursively enumerable. We also give motivation for our results and some connections to related work
    • …
    corecore