6 research outputs found

    An EBSD study of the deformation of service-aged 316 austenitic steel

    Get PDF
    Electron backscatter diffraction (EBSD) has been used to examine the plastic deformation of an ex-service 316 austenitic stainless steel at 297K and 823K (24 °C and 550 °C)at strain rates 3.5x10-3 to 4 x 10-7 s-1. The distribution of local misorientations was found to depend on the imposed plastic strain following a lognormal distribution at true strains 0.1. At 823 K (550 °C), the distribution of misorientations depended on the applied strain rate. The evolution of lattice misorientations with increasing plastic strain up to 0.23 was quantified using the metrics kernel average misorientation, average intragrain misorientation, and low angle misorientation fraction. For strain rate down to 10-5 s-1 all metrics were insensitive to deformation temperature, mode (tension vs. compression) and orientation of the measurement plane. The strain sensitivity of the different metrics was found to depend on the misorientation ranges considered in their calculation. A simple new metric, proportion of undeformed grains, is proposed for assessing strain in both aged and unaged material. Lattice misorientations build up with strain faster in aged steel than in un-aged material and most of the metrics were sensitive to the effects of thermal aging. Ignoring aging effects leads to significant overestimation of the strains around welds. The EBSD results were compared with nanohardness measurements and good agreement established between the two techniques of assessing plastic strain in aged 316 steel

    Effect of surface machining on the environmentally-assisted cracking of Alloy 182 and 316L stainless steel in light water reactor environments – results of the collaborative project MEACTOS

    Get PDF
    The main objective of the EU-funded project mitigating environmentally-assisted cracking through optimisation of surface condition (MEACTOS) was to gain knowledge on the ability of different surface machining procedures to mitigate environmentally-assisted cracking (EAC) in typical light water reactor structural materials and environments. Surfaces of cold-worked (CW) type 316L austenitic stainless steel and nickel-based weld metal Alloy 182 flat tapered tensile specimens were machined using different processes. EAC initiation susceptibility of these specimens was evaluated using constant extension rate tensile (CERT) tests under simulated boiling water reactor (BWR) and pressurized water reactor (PWR) conditions and assessed using constant load experiments. More than a hundred tests were performed covering about 10 years of autoclave testing time. Only minor or no measurable improvements in EAC initiation susceptibility as a function of surface treatments (grinding or advanced machining) compared to the standard industrial face milling were demonstrated. In most cases, the stress thresholds for EAC initiation determined in constant load tests confirmed the trend obtained from CERT tests. This paper summarises the most important results and conclusions concerning the EAC initiation behaviour for the CW 316L and Alloy 182 under reducing PWR and oxidizing BWR conditions
    corecore