3 research outputs found

    Impact of the COVID-19 Lockdown in a European Regional Monitoring Network (Spain): Are We Free from Pollution Episodes?

    Get PDF
    The impact of the lockdown, during the period from March to June in 2020, upon the air quality of the Basque Country in northern Spain is analyzed. The evaluation accounts for the meteorology of the period. Daily and sub-daily analysis of aerosol and ozone records show that the territory was repeatedly affected by episodes of pollutants from outer regions. Three episodes of PM10 and ten of PM2.5 were caused by transported anthropogenic European sulfates, African dust, and wildland fires. The region, with a varied orographic climatology, shows high and diverse industrial activity. Urban and interurban road traffic of the region decreased by 49% and 53%, respectively, whereas industrial activity showed a lower reduction of 20%. Consequently, the average concentrations of NO2 in the cities during the period fell to 12.4 µg·m−3 (−45%). Ozone showed up to five exceedances of the WHOAQG for the daily maximum 8-h average in both rural and urban sites, associated with transport through France and the Bay of Biscay, under periods of European blocking anticyclones. However, averages showed a moderate decrease (−11%) in rural environments, in line with the precursor reductions, and disparate changes in the cities, which reproduced the weekend effect of their historical records. The PM10 decreased less than expected (−10% and −21%, in the urban and rural environments, respectively), probably caused by the modest decrease of industrial activity around urban sites and favorable meteorology for secondary aerosol formation, which could also influence the lower changes observed in the PM2.5 (−1% and +3% at the urban and rural sites, respectively). Consequently, in a future low NOx traffic emission scenario, the inter-regional PM and ozone control will require actions across various sectors, including the industry and common pollution control strategies.This research was funded by the Basque Government and the University of the Basque Country (GIC15/152 and GIU13/03) and by the Environment Vice-Department of the Basque Government for the measurement of biogenic volatile organic compounds in Valderejo Natural Park

    Using competency maps for embedding and assessing sustainability in engineering degrees

    Get PDF
    This paper features a methodology for embedding and assessing a competency in an academic curriculum using competency maps. This methodology enables embedding and assessment of any competency in any curriculum, regardless of the educational level, as long as the competency is correctly described by means of a competency map. As an example of the application of this methodology, a proposal for embedding and assessing sustainability in engineering degrees is presented. A competency map embodies the set of learning outcomes of the competency that students should have acquired upon completion of their studies. This information allows the designers of the curriculum to determine the learning outcomes that should be developed in the degree and to distribute them appropriately among the subjects. The presence map can be constructed from the competency map. It contains information regarding the extent to which each learning outcome of the competency map is being developed in the degree. This paper proposes the construction of a presence map in two steps: (1) perform a survey and (2) conduct a semi-structured interview with professors. The interview, which is conducted by one or several experts in the competency, allows the different criteria used by the professors when filling out the questionnaire to be unified, whereas the presence map shows whether a particular competency is correctly embedded in the curriculum and the aspects that could be improved. Finally, to validate that the students are achieving the learning outcomes of the competency map, we propose a survey to measure the students’ perception about their own learning in the competency. These results can be compared with the presence map to help determine whether, from the students’ point of view, the expected learning outcomes are being achieved in the corresponding subjects. The aim of this process is to provide the information necessary to indicate any changes in the curriculum that may improve the embedding of the competency.This research was funded by the Spanish Ministerio de Ciencia, Innovación y Universidades, the Spanish Agencia Estatal de Investigación (AEI), and the Fondo Europeo de Desarrollo Regional (FEDER), from study design to submission, under grant number RTI2018-094982-B-I00.Peer ReviewedPostprint (published version

    Galernas: A history of coastally trapped disturbances (2003−2020) with hidden frontogenesis in the Bay of Biscay

    Get PDF
    Galerna is the term accepted for an abrupt westerly change that affects the north coast of Spain. The wind surge travels from the mid-north coast of Spain to France, generally reaching their maximum intensity at the Basque Coast, and cuts off a period of hot weather, clear skies, and calm conditions at sea. The galernas have a large history of shipwrecks and fishermen deaths. They have been characterized as coastally trapped disturbances (CTD) and their propagation, enhanced with the local formation of a micro-front, was documented to behave like a density current. Alternatively, synoptic fronts have also been reported to cause galernas, considered to be more intense than those generated by a local micro-front. In this article we have generated the first climatology (2003–2020) of these events based on an objective identification methodology. The developed Event Identification Software (EIS), based on both 10-min surface station data and hourly ERA5 reanalysis fields, together with a new Front Identification Scheme (FIS) have enabled a deeper study into the origin and development of these micro-fronts, and a more comprehensive exploration of the interaction of the oceanic fronts entering the Bay of Biscay. Our results show that the area receives an average of four to five relatively intense galernas (Vmax > 50 km h−1) per year. Their number shows a great interannual variability (from one to seven) and a marked seasonality: May and June concentrate the largest fraction (almost one episode each year) and practically no episodes in winter. They occur more frequently between noon and the late afternoon, where the most intense wind records concentrate. Very strong galernas (Vmax > 72 km h−1) have occurred in all 18 years, can happen in any month from February to November, and their monthly distribution does not show the mentioned seasonality. On the contrary, the highest rates of temperature decrease across the galerna front in the coastal stations (−∆T/0.5 h > 4 °C) do have a stronger seasonality, with May and June concentrating a relatively large number of cases with a more abrupt temperature drop. The FIS shows that most of the galernas (83.5%) have a local origin inside the Bay of Biscay, and only a few ones (16.5%) are caused by oceanic fronts initiated out of the region. The local frontogenesis is more frequently initiated by the relatively cold marine southwesterly pre-frontals preceding a parent oceanic front and blowing against the warm continentals inside the Bay of Biscay, after being ducted along the north and northwestern coast of Spain. This hidden local frontogenesis, first revealed by the FIS, seems to be enhanced by the observed lee troughing, which could have both a thermal and dynamic origin, acting simultaneously after the intense Foehn at the coastal strip, preceding the formation of the galerna front. The local front enhancement appears to be the reason for the apparent jump of the primary front, which may eventually weaken, and even disappear, as the galerna front sharpens. Even during the more occasional frontal galernas, directly caused by the westerlies or north-westerlies behind the oceanic front, their eastward propagation is more rapid over the coastal area. The front deforms in shape and may cause its characteristic unexpected/abrupt irruption. All the EIS detected galernas, even the frontal ones, are wind reversals caused by a coastally trapped marine boundary layer. The upper-level ridge over Europe, observed in all of them, seems to be a synoptic ingredient for their development, preventing the eastward propagation of Atlantic depressions and enhancing at the same time the temperature and pressure gradients between the marine and continental air masses.The authors wish to thank the Basque Government and the University of the Basque Country UPV/EHU as the source of our main financial support: GIA consolidated Research Groups (https://www.ehu.eus/es/web/gia) IT1057-16 (GIC15/152) and GIU13/03. These financing bodies have played an exclusively economic role in the study
    corecore