4 research outputs found

    High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes

    Get PDF
    The increasing demand for electrical energy storage makes it essential to explore alternative battery chemistries that overcome the energy-density limitations of the current state-of-the-art lithium-ion batteries. In this scenario, lithium–sulfur batteries (LSBs) stand out due to the low cost, high theoretical capacity, and sustainability of sulfur. However, this battery technology presents several intrinsic limitations that need to be addressed in order to definitively achieve its commercialization. Herein, we report the fruitfulness of three different formulations using well-selected functional carbonaceous additives for sulfur cathode development, an in-house synthesized graphene-based porous carbon (ResFArGO), and a mixture of commercially available conductive carbons (CAs), as a facile and scalable strategy for the development of high-performing LSBs. The additives clearly improve the electrochemical properties of the sulfur electrodes due to an electronic conductivity enhancement, leading to an outstanding C-rate response with a remarkable capacity of 2 mA h cm–2 at 1C and superb capacities of 4.3, 4.0, and 3.6 mA h cm–2 at C/10 for ResFArGO10, ResFArGO5, and CAs, respectively. Moreover, in the case of ResFArGO, the presence of oxygen functional groups enables the development of compact high sulfur loading cathodes (>4 mgS cm–2) with a great ability to trap the soluble lithium polysulfides. Notably, the scalability of our system was further demonstrated by the assembly of prototype pouch cells delivering excellent capacities of 90 mA h (ResFArGO10 cell) and 70 mA h (ResFArGO5 and CAs cell) at C/10.This work was funded by the European Union’s Horizon 2020 research and innovation program Graphene Flagship Core Project 3 (GrapheneCore3) under grant agreement 881603. The project was also supported by Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI), and the European Regional Development Fund (ERDF) (RTI2018-098301-B-I00). J.C. is a beneficiary of the Predoctoral Program from the Education Department of the Basque Government. J.L.G.-U. is very thankful to the Spanish Ministry of Universities for the FPU grant (16/03498). Finally, we want to acknowledge GRAPHENEA for supplying the graphene oxide used in this work

    Producción de biocombustible furánico mediante catálisis heterogénea

    No full text
    [ES]Hoy en día, debido al aumento del consumo energético se necesitan diferentes vías para disminuir la dependencia del petróleo. Por ello, en este proyecto se pretende producir el biocombustible 2,5-dimetilfurano (DMF) por vía catálisis heterogénea mediante 5-hidroximetilfurfural (HMF). El DMF tiene unas propiedades físicas que lo hacen firme candidato para ser un biocombustible alternativo a la gasolina o bioaditivo oxigenado que mejore el índice de octano. Los procesos recogidos en la literatura involucran etapas de reacción de catálisis heterogénea con el uso de metales preciosos o nobles que suponen un alto coste de proceso. Sin embargo, en este proyecto se van a preparar formulaciones catalíticas con metales nobles para disminuir el coste. Para ello, se usarán catalizadores de cobre soportados sobre circonio, así como se analizará la influencia de la adición de rutenio, cerio o níquel en términos de rendimiento hacia el biocombustible.[EU]Gaur egun, gure gizarteak eragin duen energiaren kontsumoa dela eta, petrolioaren dependentzia gutxitzea da helburua. Horretarako, proiektu honen bitartez 2,5-dimetilfurano bioerregaia sortu nahi da, 5-hidroximetilfufuralaren katalisi heterogeneoaren bidez. DMF-k propietate fisiko aproposak ditu gasolinaren alternatiba izateko. Literaturan azaldutako prozesuek bai metal noble bai preziatuen bitartez sortzen dute bioerregaia. Hala ere, proiektu honetan katalizatzaile ez nobleak erabiliko dira, merkeagoa izateagatik. Kobrezko katalizatzaileak izango dira, zirkonioan jaitsita, baina rutenioaren, zerioaren eta nikelaren eragina aztertuko da bioerregaiaren etekina eta hautakortasunari dagokionez.[EN]Nowadays, due to our energy consumption, it is very important to reduce our petrol dependency. In order to that, in this project 2,5-dimethylfuran biofuel is going to be produced by catalyst heterogeneous of 5-hidroximethylfurfural. DMF has physical properties that make strong candidate to be an alternative to gasoline or a oxygenate bio additive that improves the octane rating. Many processes explained in bibliography produce DMF with precious or noble metals, which increase the cost of it. The project aims to address the synthesis of DMF using cheaper transition metals catalysts that make the process economically viable. Cupper catalysts will be used, supported on zirconia, but it will also be analysed the influence of ruthenium, ceria and also nickel in the yield and selectivity for its industrial production

    Perspective of polymer-based solid-state Li-S batteries

    No full text
    Li-S batteries, as the most promising post Li-ion technology, have been intensively investigated for more than a decade. Although most previous studies have focused on liquid systems, solid electrolytes, particularly all-solid-state polymer electrolytes (ASSPEs) and quasi-solid-state polymer electrolyte (QSSPEs), are appealing for Li-S cells due to their excellent flexibility and mechanical stability. Such Li-S batteries not only provide significantly improved safety but are also expected to augment the all-inclusive energy density compared to liquid systems. Therefore, this perspective briefly summarizes the recent progress on polymer-based solid-state Li-S batteries, with a special focus on electrolytes, including ASSPEs and QSSPEs. Furthermore, future work is proposed based on the existing development and current challenges
    corecore